Sort by:
Page 17 of 91902 results

A novel deep learning-based brain age prediction framework for routine clinical MRI scans.

Kim H, Park S, Seo SW, Na DL, Jang H, Kim JP, Kim HJ, Kang SH, Kwak K

pubmed logopapersJul 29 2025
Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.

Deep Learning-Based Acceleration in MRI: Current Landscape and Clinical Applications in Neuroradiology.

Rai P, Mark IT, Soni N, Diehn F, Messina SA, Benson JC, Madhavan A, Agarwal A, Bathla G

pubmed logopapersJul 28 2025
Magnetic resonance imaging (MRI) is a cornerstone of neuroimaging, providing unparalleled soft-tissue contrast. However, its clinical utility is often limited by long acquisition times, which contribute to motion artifacts, patient discomfort, and increased costs. Although traditional acceleration techniques, such as parallel imaging and compressed sensing help reduce scan times, they may reduce signal-to-noise ratio (SNR) and introduce artifacts. The advent of deep learning-based image reconstruction (DLBIR) may help in several ways to reduce scan times while preserving or improving image quality. Various DLBIR techniques are currently available through different vendors, with claimed reductions in gradient times up to 85% while maintaining or enhancing lesion conspicuity, improved noise suppression and diagnostic accuracy. The evolution of DLBIR from 2D to 3D acquisitions, coupled with advancements in self-supervised learning, further expands its capabilities and clinical applicability. Despite these advancements, challenges persist in generalizability across scanners and imaging conditions, susceptibility to artifacts and potential alterations in pathology representation. Additionally, limited data on training, underlying algorithms and clinical validation of these vendor-specific closed-source algorithms pose barriers to end-user trust and widespread adoption. This review explores the current applications of DLBIR in neuroimaging, vendor-driven implementations, and emerging trends that may impact accelerated MRI acquisitions.ABBREVIATIONS: PI= parallel imaging; CS= compressed sensing; DLBIR = deep learning-based image reconstruction; AI= artificial intelligence; DR =. Deep resolve; ACS = Artificial-intelligence-assisted compressed sensing.

Constructing a predictive model for children with autism spectrum disorder based on whole brain magnetic resonance radiomics: a machine learning study.

Chen X, Peng J, Zhang Z, Song Q, Li D, Zhai G, Fu W, Shu Z

pubmed logopapersJul 28 2025
Autism spectrum disorder (ASD) diagnosis remains challenging and could benefit from objective imaging-based approaches. This study aimed to construct a prediction model using whole-brain imaging radiomics and machine learning to identify children with ASD. We analyzed 223 subjects (120 with ASD) from the ABIDE database, randomly divided into training and test sets (7:3 ratio), and an independent external test set of 87 participants from Georgetown University and University of Miami. Radiomics features were extracted from white matter, gray matter, and cerebrospinal fluid from whole-brain MR images. After feature dimensionality reduction, we screened clinical predictors using multivariate logistic regression and combined them with radiomics signatures to build machine learning models. Model performance was evaluated using ROC curves and by stratifying subjects into risk subgroups. Radiomics markers achieved AUCs of 0.78, 0.75, and 0.74 in training, test, and external test sets, respectively. Verbal intelligence quotient(VIQ) emerged as a significant ASD predictor. The decision tree algorithm with radiomics markers performed best, with AUCs of 0.87, 0.84, and 0.83; sensitivities of 0.89, 0.84, and 0.86; and specificities of 0.70, 0.63, and 0.66 in the three datasets, respectively. Risk stratification using a cut-off value of 0.4285 showed significant differences in ASD prevalence between subgroups across all datasets (training: χ<sup>2</sup>=21.325; test: χ<sup>2</sup>=5.379; external test: χ<sup>2</sup>=21.52m, P<0.05). A radiomics signature based on whole-brain MRI features can effectively identify ASD, with performance enhanced by incorporating VIQ data and using a decision tree algorithm, providing a potential adaptive strategy for clinical practice. ASD = Autism Spectrum Disorder; MRI = Magnetic Resonance Imaging; SVM = support vector machine; KNN = K-nearest neighbor; VIQ = Verbal intelligence quotient; FIQ = Full-Scale intelligence quotient; ROC = Receiver Operating Characteristic; AUC = Area under Curve.

A new low-rank adaptation method for brain structure and metastasis segmentation via decoupled principal weight direction and magnitude.

Zhu H, Yang H, Wang Y, Hu K, He G, Zhou J, Li Z

pubmed logopapersJul 28 2025
Deep learning techniques have become pivotal in medical image segmentation, but their success often relies on large, manually annotated datasets, which are expensive and labor-intensive to obtain. Additionally, different segmentation tasks frequently require retraining models from scratch, resulting in substantial computational costs. To address these limitations, we propose PDoRA, an innovative parameter-efficient fine-tuning method that leverages knowledge transfer from a pre-trained SwinUNETR model for a wide range of brain image segmentation tasks. PDoRA minimizes the reliance on extensive data annotation and computational resources by decomposing model weights into principal and residual weights. The principal weights are further divided into magnitude and direction, enabling independent fine-tuning to enhance the model's ability to capture task-specific features. The residual weights remain fixed and are later fused with the updated principal weights, ensuring model stability while enhancing performance. We evaluated PDoRA on three diverse medical image datasets for brain structure and metastasis segmentation. The results demonstrate that PDoRA consistently outperforms existing parameter-efficient fine-tuning methods, achieving superior segmentation accuracy and efficiency. Our code is available at https://github.com/Perfect199001/PDoRA/tree/main .

Prediction of 1p/19q state in glioma by integrated deep learning method based on MRI radiomics.

Li F, Li Z, Xu H, Kong G, Zhang Z, Cheng K, Gu L, Hua L

pubmed logopapersJul 28 2025
To predict the 1p/19q molecular status of Lower-grade glioma (LGG) patients nondestructively, this study developed a deep learning (DL) approach using radiomic to provide a potential decision aid for clinical determination of molecular stratification of LGG. The study retrospectively collected images and clinical data of 218 patients diagnosed with LGG between July 2018 and July 2022, including 155 cases from The Cancer Imaging Archive (TCIA) database and 63 cases from a regional medical centre. Patients' clinical data and MRI images were collected, including contrast-enhanced T1-weighted images and T2-weighted images. After pre-processing the image data, tumour regions of interest (ROI) were segmented by two senior neurosurgeons. In this study, an Ensemble Convolutional Neural Network (ECNN) was proposed to predict the 1p/19q status. This method, consisting of Variational Autoencoder (VAE), Information Gain (IG) and Convolutional Neural Network (CNN), is compared with four machine learning algorithms (Random Forest, Decision Tree, K-Nearest Neighbour, Gaussian Neff Bayes). Fivefold cross-validation was used to evaluate and calibrate the model. Precision, recall, accuracy, F1 score and area under the curve (AUC) were calculated to assess model performance. Our cohort comprises 118 patients diagnosed with 1p/19q codeletion and 100 patients diagnosed with 1p/19q non-codeletion. The study findings indicate that the ECNN method demonstrates excellent predictive performance on the validation dataset. Our model achieved an average precision of 0.981, average recall of 0.980, average F1-score of 0.981, and average accuracy of 0.981. The average area under the curve (AUC) for our model is 0.994, surpassing that of the other four traditional machine learning algorithms (AUC: 0.523-0.702). This suggests that the model based on the ECNN algorithm performs well in distinguishing the 1p/19q molecular status of LGG patients. The deep learning model based on conventional MRI radiomic integrates VAE and IG methods. Compared with traditional machine learning algorithms, it shows the best performance in the prediction of 1p/19q molecular co-deletion status. It may become a potentially effective tool for non-invasively and effectively identifying molecular features of lower-grade glioma in the future, providing an important reference for clinicians to formulate individualized diagnosis and treatment plans.

Rapid vessel segmentation and reconstruction of head and neck angiograms from MR vessel wall images.

Zhang J, Wang W, Dong J, Yang X, Bai S, Tian J, Li B, Li X, Zhang J, Wu H, Zeng X, Ye Y, Ding S, Wan J, Wu K, Mao Y, Li C, Zhang N, Xu J, Dai Y, Shi F, Sun B, Zhou Y, Zhao H

pubmed logopapersJul 28 2025
Three-dimensional magnetic resonance vessel wall imaging (3D MR-VWI) is critical for characterizing cerebrovascular pathologies, yet its clinical adoption is hindered by labor-intensive postprocessing. We developed VWI Assistant, a multi-sequence integrated deep learning platform trained on multicenter data (study cohorts 1981 patients and imaging datasets) to automate artery segmentation and reconstruction. The framework demonstrated robust performance across diverse patient populations, imaging protocols, and scanner manufacturers, achieving 92.9% qualified rate comparable to expert manual delineation. VWI Assistant reduced processing time by over 90% (10-12 min per case) compared to manual methods (p < 0.001) and improved inter-/intra-reader agreement. Real-world deployment (n = 1099 patients) demonstrated rapid clinical adoption, with utilization rates increasing from 10.8% to 100.0% within 12 months. By streamlining 3D MR-VWI workflows, VWI Assistant addresses scalability challenges in vascular imaging, offering a practical tool for routine use and large-scale research, significantly improving workflow efficiency while reducing labor and time costs.

Dosimetric evaluation of synthetic kilo-voltage CT images generated from megavoltage CT for head and neck tomotherapy using a conditional GAN network.

Choghazardi Y, Tavakoli MB, Abedi I, Roayaei M, Hemati S, Shanei A

pubmed logopapersJul 28 2025
The lower image contrast of megavoltage computed tomography (MVCT), which corresponds to kilovoltage computed tomography (kVCT), can inhibit accurate dosimetric assessments. This study proposes a deep learning approach, specifically the pix2pix network, to generate high-quality synthetic kVCT (skVCT) images from MVCT data. The model was trained on a dataset of 25 paired patient images and evaluated on a test set of 15 paired images. We performed visual inspections to assess the quality of the generated skVCT images and calculated the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Dosimetric equivalence was evaluated by comparing the gamma pass rates of treatment plans derived from skVCT and kVCT images. Results showed that skVCT images exhibited significantly higher quality than MVCT images, with PSNR and SSIM values of 31.9 ± 1.1 dB and 94.8% ± 1.3%, respectively, compared to 26.8 ± 1.7 dB and 89.5% ± 1.5% for MVCT-to-kVCT comparisons. Furthermore, treatment plans based on skVCT images achieved excellent gamma pass rates of 99.78 ± 0.14% and 99.82 ± 0.20% for 2 mm/2% and 3 mm/3% criteria, respectively, comparable to those obtained from kVCT-based plans (99.70 ± 0.31% and 99.79 ± 1.32%). This study demonstrates the potential of pix2pix models for generating high-quality skVCT images, which could significantly enhance Adaptive Radiation Therapy (ART).

Brain White Matter Microstructure Associations with Blood Markers of the GSH Redox cycle in Schizophrenia

Pavan, T., Steullet, P., Aleman-Gomez, Y., Jenni, R., Schilliger, Z., Cleusix, M., Alameda, L., Do, K. Q., Conus, P., Hagmann, P., Dwir, D., Klauser, P., Jelescu, I.

medrxiv logopreprintJul 28 2025
In groups of patients suffering from schizophrenia (SZ), redox dysregulation was reported in both peripheral fluids and brain. It has been hypothesized that such dysregulation, including alterations of the glutathione (GSH) cycle could participate in the brain white matter (WM) abnormalities in SZ due to the oligodendrocytes susceptibility to oxidative stress. In this study we aim to assess the differences between 82 schizophrenia patients (PT) and 86 healthy controls (HC) in GSH-redox peripheral blood markers: GSH peroxidase (GPx), reductase (GR) enzymatic activities and their ratio (GPx/GR-ratio), evaluating the hypotheses that alterations in the homeostasis of the systemic GSH cycle may be associated with pathological mechanisms in the brain WM in PT. To do so, we employ the advanced diffusion MRI methods: Diffusion Kurtosis Imaging (DKI) and White Matter Tract Integrity-Watson (WMTI-W), which provide excellent sensitivity to demyelination and neuroinflammation. We show that GPx levels are higher (p=0.00041) in female control participants and decrease with aging (p=0.026). We find differences between PT and HC in the association of GR and mean kurtosis (MK, p<0.0001). Namely, lower MK was associated with higher blood GR activity in HC, but not in PT, suggesting that high GR activity (a hallmark of reductive stress) in HC was linked to changes in myelin integrity. However, GSH-redox peripheral blood markers did not explain the WM anomalies detected in PT, or the design of the present study could not detect subtle phenomenon, if present.

Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging

Amirmohammad Shamaei, Alexander Stebner, Salome, Bosshart, Johanna Ospel, Gouri Ginde, Mariana Bento, Roberto Souza

arxiv logopreprintJul 28 2025
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.

Predicting Intracranial Pressure Levels: A Deep Learning Approach Using Computed Tomography Brain Scans.

Theodoropoulos D, Trivizakis E, Marias K, Xirouchaki N, Vakis A, Papadaki E, Karantanas A, Karabetsos DA

pubmed logopapersJul 28 2025
Elevated intracranial pressure (ICP) is a serious condition that demands prompt diagnosis to avoid significant neurological injury or even death. Although invasive techniques remain the "gold standard" for ICP measuring, they are time-consuming and pose risks of complications. Various noninvasive methods have been suggested, but their experimental status limits their use in emergency situations. On the other hand, although artificial intelligence has rapidly evolved, it has not yet fully harnessed fast-acquisition modalities such as computed tomography (CT) scans to evaluate ICP. This is likely due to the lack of available annotated data sets. In this article, we present research that addresses this gap by training four distinct deep learning models on a custom data set, enhanced with demographical and Glasgow Coma Scale (GCS) values. A key innovation of our study is the incorporation of demographical data and GCS values as additional channels of the scans. The models were trained and validated on a custom data set consisting of paired CT brain scans (n = 578) with corresponding ICP values, supplemented by GCS scores and demographical data. The algorithm addresses a binary classification problem by predicting whether ICP levels exceed a predetermined threshold of 15 mm Hg. The top-performing models achieved an area under the curve of 88.3% and a recall of 81.8%. An algorithm that enhances the transparency of the model's decisions was used to provide insights into where the models focus when generating outcomes, both for the best and lowest-performing models. This study demonstrates the potential of AI-based models to evaluate ICP levels from brain CT scans with high recall. Although promising, further improvements are necessary in the future to validate these findings and improve clinical applicability.
Page 17 of 91902 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.