Sort by:
Page 17 of 73728 results

Commercialization of medical artificial intelligence technologies: challenges and opportunities.

Li B, Powell D, Lee R

pubmed logopapersJul 18 2025
Artificial intelligence (AI) is already having a significant impact on healthcare. For example, AI-guided imaging can improve the diagnosis/treatment of vascular diseases, which affect over 200 million people globally. Recently, Chiu and colleagues (2024) developed an AI algorithm that supports nurses with no ultrasound training in diagnosing abdominal aortic aneurysms (AAA) with similar accuracy as ultrasound-trained physicians. This technology can therefore improve AAA screening; however, achieving clinical impact with new AI technologies requires careful consideration of commercialization strategies, including funding, compliance with safety and regulatory frameworks, health technology assessment, regulatory approval, reimbursement, and clinical guideline integration.

Enhanced Image Quality and Comparable Diagnostic Performance of Prostate Fast Bi-MRI with Deep Learning Reconstruction.

Shen L, Yuan Y, Liu J, Cheng Y, Liao Q, Shi R, Xiong T, Xu H, Wang L, Yang Z

pubmed logopapersJul 18 2025
To evaluate image quality and diagnostic performance of prostate biparametric MRI (bi-MRI) with deep learning reconstruction (DLR). This prospective study included 61 adult male urological patients undergoing prostate MRI with standard-of-care (SOC) and fast protocols. Sequences included T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. DLR images were generated from FAST datasets. Three groups (SOC, FAST, DLR) were compared using: (1) five-point Likert scale, (2) signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), (3) lesion slope profiles, (4) dorsal capsule edge rise distance (ERD). PI-RADS scores were assigned to dominant lesions. ADC values were measured in histopathologically confirmed cases. Diagnostic performance was analyzed via receiver operating characteristic (ROC) curves (accuracy/sensitivity/specificity). Statistical tests included Friedman test, one-way ANOVA with post hoc analyses, and DeLong test for ROC comparisons (P<0.05). FAST scanning protocols reduced acquisition time by nearly half compared to the SOC scanning protocol. When compared to T2WI<sub>FAST</sub>, DLR significantly improved SNR, CNR, slope profile, and ERD (P < 0.05). Similarly, DLR significantly enhanced SNR, CNR, and image sharpness when compared to DWI<sub>FAST</sub> (P < 0.05). No significant differences were observed in PI-RADS scores and ADC values between groups (P > 0.05). The areas under the ROC curves, sensitivity, and specificity of ADC values for distinguishing benign and malignant lesions remained consistent (P > 0.05). DLR enhances image quality in fast prostate bi-MRI while preserving PI-RADS classification accuracy and ADC diagnostic performance.

A multi-stage training and deep supervision based segmentation approach for 3D abdominal multi-organ segmentation.

Wu P, An P, Zhao Z, Guo R, Ma X, Qu Y, Xu Y, Yu H

pubmed logopapersJul 17 2025
Accurate X-ray Computed tomography (CT) image segmentation of the abdominal organs is fundamental for diagnosing abdominal diseases, planning cancer treatment, and formulating radiotherapy strategies. However, the existing deep learning based models for three-dimensional (3D) CT image abdominal multi-organ segmentation face challenges, including complex organ distribution, scarcity of labeled data, and diversity of organ structures, leading to difficulties in model training and convergence and low segmentation accuracy. To address these issues, a novel multi-stage training and a deep supervision model based segmentation approach is proposed. It primary integrates multi-stage training, pseudo- labeling technique, and a developed deep supervision model with attention mechanism (DLAU-Net), specifically designed for 3D abdominal multi-organ segmentation. The DLAU-Net enhances segmentation performance and model adaptability through an improved network architecture. The multi-stage training strategy accelerates model convergence and enhances generalizability, effectively addressing the diversity of abdominal organ structures. The introduction of pseudo-labeling training alleviates the bottleneck of labeled data scarcity and further improves the model's generalization performance and training efficiency. Experiments were conducted on a large dataset provided by the FLARE 2023 Challenge. Comprehensive ablation studies and comparative experiments were conducted to validate the effectiveness of the proposed method. Our method achieves an average organ accuracy (AVG) of 90.5% and a Dice Similarity Coefficient (DSC) of 89.05% and exhibits exceptional performance in terms of training speed and handling data diversity, particularly in the segmentation tasks of critical abdominal organs such as the liver, spleen, and kidneys, significantly outperforming existing comparative methods.

FSS-ULivR: a clinically-inspired few-shot segmentation framework for liver imaging using unified representations and attention mechanisms.

Debnath RK, Rahman MA, Azam S, Zhang Y, Jonkman M

pubmed logopapersJul 17 2025
Precise liver segmentation is critical for accurate diagnosis and effective treatment planning, serving as a foundation for medical image analysis. However, existing methods struggle with limited labeled data, poor generalizability, and insufficient integration of anatomical and clinical features. To address these limitations, we propose a novel Few-Shot Segmentation model with Unified Liver Representation (FSS-ULivR), which employs a ResNet-based encoder enhanced with Squeeze-and-Excitation modules to improve feature learning, an enhanced prototype module that utilizes a transformer block and channel attention for dynamic feature refinement, and a decoder with improved attention gates and residual refinement strategies to recover spatial details from encoder skip connections. Through extensive experiments, our FSS-ULivR model achieved an outstanding Dice coefficient of 98.94%, Intersection over Union (IoU) of 97.44% and a specificity of 93.78% on the Liver Tumor Segmentation Challenge dataset. Cross-dataset evaluations further demonstrated its generalizability, with Dice scores of 95.43%, 92.98%, 90.72%, and 94.05% on 3DIRCADB01, Colorectal Liver Metastases, Computed Tomography Organs (CT-ORG), and Medical Segmentation Decathlon Task 3: Liver datasets, respectively. In multi-organ segmentation on CT-ORG, it delivered Dice scores ranging from 85.93% to 94.26% across bladder, bones, kidneys, and lungs. For brain tumor segmentation on BraTS 2019 and 2020 datasets, average Dice scores were 90.64% and 89.36% across whole tumor, tumor core, and enhancing tumor regions. These results emphasize the clinical importance of our model by demonstrating its ability to deliver precise and reliable segmentation through artificial intelligence techniques and engineering solutions, even in scenarios with scarce annotated data.

Deep Learning-Based Fetal Lung Segmentation from Diffusion-weighted MRI Images and Lung Maturity Evaluation for Fetal Growth Restriction

Zhennan Xiao, Katharine Brudkiewicz, Zhen Yuan, Rosalind Aughwane, Magdalena Sokolska, Joanna Chappell, Trevor Gaunt, Anna L. David, Andrew P. King, Andrew Melbourne

arxiv logopreprintJul 17 2025
Fetal lung maturity is a critical indicator for predicting neonatal outcomes and the need for post-natal intervention, especially for pregnancies affected by fetal growth restriction. Intra-voxel incoherent motion analysis has shown promising results for non-invasive assessment of fetal lung development, but its reliance on manual segmentation is time-consuming, thus limiting its clinical applicability. In this work, we present an automated lung maturity evaluation pipeline for diffusion-weighted magnetic resonance images that consists of a deep learning-based fetal lung segmentation model and a model-fitting lung maturity assessment. A 3D nnU-Net model was trained on manually segmented images selected from the baseline frames of 4D diffusion-weighted MRI scans. The segmentation model demonstrated robust performance, yielding a mean Dice coefficient of 82.14%. Next, voxel-wise model fitting was performed based on both the nnU-Net-predicted and manual lung segmentations to quantify IVIM parameters reflecting tissue microstructure and perfusion. The results suggested no differences between the two. Our work shows that a fully automated pipeline is possible for supporting fetal lung maturity assessment and clinical decision-making.

The application of super-resolution ultrasound radiomics models in predicting the failure of conservative treatment for ectopic pregnancy.

Zhang M, Sheng J

pubmed logopapersJul 17 2025
Conservative treatment remains a viable option for selected patients with ectopic pregnancy (EP), but failure may lead to rupture and serious complications. Currently, serum β-hCG is the main predictor for treatment outcomes, yet its accuracy is limited. This study aimed to develop and validate a predictive model that integrates radiomic features derived from super-resolution (SR) ultrasound images with clinical biomarkers to improve risk stratification. A total of 228 patients with EP receiving conservative treatment were retrospectively included, with 169 classified as treatment success and 59 as failure. SR images were generated using a deep learning-based generative adversarial network (GAN). Radiomic features were extracted from both normal-resolution (NR) and SR ultrasound images. Features with intraclass correlation coefficient (ICC) ≥ 0.75 were retained after intra- and inter-observer evaluation. Feature selection involved statistical testing and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Random forest algorithms were used to construct NR and SR models. A clinical model based on serum β-hCG was also developed. The Clin-SR model was constructed by fusing SR radiomics with β-hCG values. Model performance was evaluated using area under the curve (AUC), calibration, and decision curve analysis (DCA). An independent temporal validation cohort (n = 40; 20 failures, 20 successes) was used to validation of the nomogram derived from the Clin-SR model. The SR model significantly outperformed the NR model in the test cohort (AUC: 0.791 ± 0.015 vs. 0.629 ± 0.083). In a representative iteration, the Clin-SR fusion model achieved an AUC of 0.870 ± 0.015, with good calibration and net clinical benefit, suggesting reliable performance in predicting conservative treatment failure. In the independent validation cohort, the nomogram demonstrated good generalizability with an AUC of 0.808 and consistent calibration across risk thresholds. Key contributing radiomic features included Gray Level Variance and Voxel Volume, reflecting lesion heterogeneity and size. The Clin-SR model, which integrates deep learning-enhanced SR ultrasound radiomics with serum β-hCG, offers a robust and non-invasive tool for predicting conservative treatment failure in ectopic pregnancy. This multimodal approach enhances early risk stratification and supports personalized clinical decision-making, potentially reducing overtreatment and emergency interventions.

Opportunistic computed tomography (CT) assessment of osteoporosis in patients undergoing transcatheter aortic valve replacement (TAVR).

Paukovitsch M, Fechner T, Felbel D, Moerike J, Rottbauer W, Klömpken S, Brunner H, Kloth C, Beer M, Sekuboyina A, Buckert D, Kirschke JS, Sollmann N

pubmed logopapersJul 17 2025
CT-based opportunistic screening using artificial intelligence finds a high prevalence (43%) of osteoporosis in CT scans obtained for planning of transcatheter aortic valve replacement. Thus, opportunistic screening may be a cost-effective way to assess osteoporosis in high-risk populations. Osteoporosis is an underdiagnosed condition associated with fractures and frailty, but may be detected in routine computed tomography (CT) scans. Volumetric bone mineral density (vBMD) was measured in clinical routine thoraco-abdominal CT scans of 207 patients for planning of transcatheter aortic valve replacement (TAVR) using an artificial intelligence (AI)-based algorithm. 43% of patients had osteoporosis (vBMD < 80 mg/cm<sup>3</sup> L1-L3) and were elderly (83.0 {interquartile range [IQR]: 78.0-85.5} vs. 79.0 {IQR: 71.8-84.0} years, p < 0.001), more often female (55.1 vs. 28.8%, p < 0.001), and had a higher Society of Thoracic Surgeon's score for mortality (3.0 {IQR:1.8-4.6} vs. 2.1 {IQR: 1.4-3.2}%, p < 0.001). In addition to lumbar vBMD (58.2 ± 14.7 vs. 106 ± 21.4 mg/cm<sup>3</sup>, p < 0.001), thoracic vBMD (79.5 ± 17.9 vs. 127.4 ± 26.0 mg/cm<sup>3</sup>, p < 0.001) was also significantly reduced in these patients and showed high diagnostic accuracy for osteoporosis assessment (area under curve: 0.96, p < 0.001). Osteoporotic patients were significantly more often at risk for falls (40.4 vs. 22.9%, p = 0.007) and required help in activities of daily life (ADL) more frequently (48.3 vs. 33.1%, p = 0.026), while direct-to-home discharges were fewer (88.8 vs. 96.6%, p = 0.026). In-hospital bleeding complications (3.4 vs. 5.1%), stroke (1.1 vs. 2.5%), and death (1.1 vs. 0.8%) were equally low, while in-hospital device success was equally high (94.4 vs. 94.9%, p > 0.05 for all comparisons). However, one-year probability of survival was significantly lower (84.0 vs. 98.2%, log-rank p < 0.01). Applying an AI-based algorithm to TAVR planning CT scans can reveal a high rate of 43% patients having osteoporosis. Osteoporosis may represent a marker related to frailty and worsened outcome in TAVR patients.

An AI method to predict pregnancy loss by extracting biological indicators from embryo ultrasound recordings in early pregnancy.

Liu L, Zang Y, Zheng H, Li S, Song Y, Feng X, Zhang X, Li Y, Cao L, Zhou G, Dong T, Huang Q, Pan T, Deng J, Cheng D

pubmed logopapersJul 17 2025
B-ultrasound results are widely used in early pregnancy loss (EPL) prediction, but there are inevitable intra-observer and inter-observer errors in B-ultrasound results especially in early pregnancy, which lead to inconsistent assessment of embryonic status, and thus affect the judgment of EPL. To address this, we need a rapid and accurate model to predict pregnancy loss in the first trimester. This study aimed to construct an artificial intelligence model to automatically extract biometric parameters from ultrasound videos of early embryos and predict pregnancy loss. This can effectively eliminate the measurement error of B-ultrasound results, accurately predict EPL, and provide decision support for doctors with relatively little clinical experience. A total of 630 ultrasound videos from women with early singleton pregnancies of gestational age between 6 and 10 weeks were used for training. A two-stage artificial intelligence model was established. First, some biometric parameters such as gestational sac areas (GSA), yolk sac diameter (YSD), crown rump length (CRL) and fetal heart rate (FHR), were extract from ultrasound videos by a deep neural network named A3F-net, which is a modified neural network based on U-Net designed by ourselves. Then an ensemble learning model predicted pregnancy loss risk based on these features. Dice, IOU and Precision were used to evaluate the measurement results, and sensitivity, AUC etc. were used to evaluate the predict results. The fetal heart rate was compared with those measured by doctors, and the accuracy of results was compared with other AI models. In the biometric features measurement stage, the precision of GSA, YSD and CRL of A3F-net were 98.64%, 96.94% and 92.83%, it was the highest compared to other 2 models. Bland-Altman analysis did not show systematic deviations between doctors and AI. The mean and standard deviation of the mean relative error between doctors and the AI model was 0.060 ± 0.057. In the EPL prediction stage, the ensemble learning models demonstrated excellent performance, with CatBoost being the best-performing model, achieving a precision of 98.0% and an AUC of 0.969 (95% CI: 0.962-0.975). In this study, a hybrid AI model to predict EPL was established. First, a deep neural network automatically measured the biometric parameters from ultrasound video to ensure the consistency and accuracy of the measurements, then a machine learning model predicted EPL risk to support doctors making decisions. The use of our established AI model in EPL prediction has the potential to assist physicians in making more accurate and timely clinical decision in clinical application.

Deep learning models for deriving optimised measures of fat and muscle mass from MRI.

Thomas B, Ali MA, Ali FMH, Chung A, Joshi M, Maiguma-Wilson S, Reiff G, Said H, Zalmay P, Berks M, Blackledge MD, O'Connor JPB

pubmed logopapersJul 17 2025
Fat and muscle mass are potential biomarkers of wellbeing and disease in oncology, but clinical measurement methods vary considerably. Here we evaluate the accuracy, precision and ability to track change for multiple deep learning (DL) models that quantify fat and muscle mass from abdominal MRI. Specifically, subcutaneous fat (SF), intra-abdominal fat (VF), external muscle (EM) and psoas muscle (PM) were evaluated using 15 convolutional neural network (CNN)-based and 4 transformer-based deep learning model architectures. There was negligible difference in the accuracy of human observers and all deep learning models in delineating SF or EM. Both of these tissues had excellent repeatability of their delineation. VF was measured most accurately by the human observers, then by CNN-based models, which outperformed transformer-based models. In distinction, PM delineation accuracy and repeatability was poor for all assessments. Repeatability limits of agreement determined when changes measured in individual patients were due to real change rather than test-retest variation. In summary, DL model accuracy and precision of delineating fat and muscle volumes varies between CNN-based and transformer-based models, between different tissues and in some cases with gender. These factors should be considered when investigators deploy deep learning methods to estimate biomarkers of fat and muscle mass.

Evolving techniques in the endoscopic evaluation and management of pancreas cystic lesions.

Maloof T, Karaisz F, Abdelbaki A, Perumal KD, Krishna SG

pubmed logopapersJul 17 2025
Accurate diagnosis of pancreatic cystic lesions (PCLs) is essential to guide appropriate management and reduce unnecessary surgeries. Despite multiple guidelines in PCL management, a substantial proportion of patients still undergo major resections for benign cysts, and a majority of resected intraductal papillary mucinous neoplasms (IPMNs) show only low-grade dysplasia, leading to significant clinical, financial, and psychological burdens. This review highlights emerging endoscopic approaches that enhance diagnostic accuracy and support organ-sparing, minimally invasive management of PCLs. Recent studies suggest that endoscopic ultrasound (EUS) and its accessory techniques, such as contrast-enhanced EUS and needle-based confocal laser endomicroscopy, as well as next-generation sequencing analysis of cyst fluid, not only accurately characterize PCLs but are also well tolerated and cost-effective. Additionally, emerging therapeutics such as EUS-guided radiofrequency ablation (RFA) and EUS-chemoablation are promising as minimally invasive treatments for high-risk mucinous PCLs in patients who are not candidates for surgery. Accurate diagnosis of PCLs remains challenging, leading to many patients undergoing unnecessary surgery. Emerging endoscopic imaging biomarkers, artificial intelligence analysis, and molecular biomarkers enhance diagnostic precision. Additionally, novel endoscopic ablative therapies offer safe, minimally invasive, organ-sparing treatment options, thereby reducing the healthcare resource burdens associated with overtreatment.
Page 17 of 73728 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.