Back to all papers

Navigator motion-resolved MR fingerprinting using implicit neural representation: Feasibility for free-breathing three-dimensional whole-liver multiparametric mapping.

Authors

Li C,Li J,Zhang J,Solomon E,Dimov AV,Spincemaille P,Nguyen TD,Prince MR,Wang Y

Affiliations (3)

  • Radiology, Weill Cornell Medicine, New York, New York, USA.
  • Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.
  • Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.

Abstract

To develop a multiparametric free-breathing three-dimensional, whole-liver quantitative maps of water T<sub>1</sub>, water T<sub>2</sub>, fat fraction (FF) and R<sub>2</sub>*. A multi-echo 3D stack-of-spiral gradient-echo sequence with inversion recovery and T<sub>2</sub>-prep magnetization preparations was implemented for multiparametric MRI. Fingerprinting and a neural network based on implicit neural representation (FINR) were developed to simultaneously reconstruct the motion deformation fields, the static images, perform water-fat separation, and generate T<sub>1</sub>, T<sub>2</sub>, R<sub>2</sub>*, and FF maps. FINR performance was evaluated in 10 healthy subjects by comparison with quantitative maps generated using conventional breath-holding imaging. FINR consistently generated sharp images in all subjects free of motion artifacts. FINR showed minimal bias and narrow 95% limits of agreement for T<sub>1</sub>, T<sub>2</sub>, R<sub>2</sub>*, and FF values in the liver compared with conventional imaging. FINR training took about 3 h per subject, and FINR inference took less than 1 min to produce static images and motion deformation fields. FINR is a promising approach for 3D whole-liver T<sub>1</sub>, T<sub>2</sub>, R<sub>2</sub>*, and FF mapping in a single free-breathing continuous scan.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.