Sort by:
Page 15 of 54537 results

UniDCF: A Foundation Model for Comprehensive Dentocraniofacial Hard Tissue Reconstruction

Chunxia Ren, Ning Zhu, Yue Lai, Gui Chen, Ruijie Wang, Yangyi Hu, Suyao Liu, Shuwen Mao, Hong Su, Yu Zhang, Li Xiao

arxiv logopreprintAug 15 2025
Dentocraniofacial hard tissue defects profoundly affect patients' physiological functions, facial aesthetics, and psychological well-being, posing significant challenges for precise reconstruction. Current deep learning models are limited to single-tissue scenarios and modality-specific imaging inputs, resulting in poor generalizability and trade-offs between anatomical fidelity, computational efficiency, and cross-tissue adaptability. Here we introduce UniDCF, a unified framework capable of reconstructing multiple dentocraniofacial hard tissues through multimodal fusion encoding of point clouds and multi-view images. By leveraging the complementary strengths of each modality and incorporating a score-based denoising module to refine surface smoothness, UniDCF overcomes the limitations of prior single-modality approaches. We curated the largest multimodal dataset, comprising intraoral scans, CBCT, and CT from 6,609 patients, resulting in 54,555 annotated instances. Evaluations demonstrate that UniDCF outperforms existing state-of-the-art methods in terms of geometric precision, structural completeness, and spatial accuracy. Clinical simulations indicate UniDCF reduces reconstruction design time by 99% and achieves clinician-rated acceptability exceeding 94%. Overall, UniDCF enables rapid, automated, and high-fidelity reconstruction, supporting personalized and precise restorative treatments, streamlining clinical workflows, and enhancing patient outcomes.

A Convergent Generalized Krylov Subspace Method for Compressed Sensing MRI Reconstruction with Gradient-Driven Denoisers

Tao Hong, Umberto Villa, Jeffrey A. Fessler

arxiv logopreprintAug 15 2025
Model-based reconstruction plays a key role in compressed sensing (CS) MRI, as it incorporates effective image regularizers to improve the quality of reconstruction. The Plug-and-Play and Regularization-by-Denoising frameworks leverage advanced denoisers (e.g., convolutional neural network (CNN)-based denoisers) and have demonstrated strong empirical performance. However, their theoretical guarantees remain limited, as practical CNNs often violate key assumptions. In contrast, gradient-driven denoisers achieve competitive performance, and the required assumptions for theoretical analysis are easily satisfied. However, solving the associated optimization problem remains computationally demanding. To address this challenge, we propose a generalized Krylov subspace method (GKSM) to solve the optimization problem efficiently. Moreover, we also establish rigorous convergence guarantees for GKSM in nonconvex settings. Numerical experiments on CS MRI reconstruction with spiral and radial acquisitions validate both the computational efficiency of GKSM and the accuracy of the theoretical predictions. The proposed optimization method is applicable to any linear inverse problem.

Delineation of the Centromedian Nucleus for Epilepsy Neuromodulation Using Deep Learning Reconstruction of White Matter-Nulled Imaging.

Ryan MV, Satzer D, Hu H, Litwiller DV, Rettmann DW, Tanabe J, Thompson JA, Ojemann SG, Kramer DR

pubmed logopapersAug 14 2025
Neuromodulation of the centromedian nucleus (CM) of the thalamus has shown promise in treating refractory epilepsy, particularly for idiopathic generalized epilepsy and Lennox-Gastaut syndrome. However, precise targeting of CM remains challenging. The combination of deep learning reconstruction (DLR) and fast gray matter acquisition T1 inversion recovery (FGATIR) offers potential improvements in visualization of CM for deep brain stimulation (DBS) targeting. The goal of the study was to evaluate the visualization of the putative CM on DLR-FGATIR and its alignment with atlas-defined CM boundaries, with the aim of facilitating direct targeting of CM for neuromodulation. This retrospective study included 12 patients with drug-resistant epilepsy treated with thalamic neuromodulation by using DLR-FGATIR for direct targeting. Postcontrast-T1-weighted MRI, DLR-FGATIR, and postoperative CT were coregistered and normalized into Montreal Neurological Institute (MNI) space and compared with the Morel histologic atlas. Contrast-to-noise ratios were measured between CM and neighboring nuclei. CM segmentations were compared between an experienced rater, a trainee rater, the Morel atlas, and the Thalamus Optimized Multi Atlas Segmentation (THOMAS) atlas (derived from expert segmentation of high-field MRI) by using the Sorenson-Dice coefficient (Dice score, a measure of overlap) and volume ratios. The number of electrode contacts within the Morel atlas CM was assessed. On DLR-FGATIR, CM was visible as an ovoid hypointensity in the intralaminar thalamus. Contrast-to-noise ratios were highest (<i>P</i> < .001) for the mediodorsal and medial pulvinar nuclei. Dice score with the Morel atlas CM was higher (median 0.49, interquartile range 0.40-0.58) for the experienced rater (<i>P</i> < .001) than the trainee rater (0.32, 0.19-0.46) and no different (<i>P</i> = .32) than the THOMAS atlas CM (0.56, 0.55-0.58). Both raters and the THOMAS atlas tended to under-segment the lateral portion of the Morel atlas CM, reflected by smaller segmentation volumes (<i>P</i> < .001). All electrodes targeting CM based on DLR-FGATIR traversed the Morel atlas CM. DLR-FGATIR permitted visualization and delineation of CM commensurate with a group atlas derived from high-field MRI. This technique provided reliable guidance for accurate electrode placement within CM, highlighting its potential use for direct targeting.

FIND-Net -- Fourier-Integrated Network with Dictionary Kernels for Metal Artifact Reduction

Farid Tasharofi, Fuxin Fan, Melika Qahqaie, Mareike Thies, Andreas Maier

arxiv logopreprintAug 14 2025
Metal artifacts, caused by high-density metallic implants in computed tomography (CT) imaging, severely degrade image quality, complicating diagnosis and treatment planning. While existing deep learning algorithms have achieved notable success in Metal Artifact Reduction (MAR), they often struggle to suppress artifacts while preserving structural details. To address this challenge, we propose FIND-Net (Fourier-Integrated Network with Dictionary Kernels), a novel MAR framework that integrates frequency and spatial domain processing to achieve superior artifact suppression and structural preservation. FIND-Net incorporates Fast Fourier Convolution (FFC) layers and trainable Gaussian filtering, treating MAR as a hybrid task operating in both spatial and frequency domains. This approach enhances global contextual understanding and frequency selectivity, effectively reducing artifacts while maintaining anatomical structures. Experiments on synthetic datasets show that FIND-Net achieves statistically significant improvements over state-of-the-art MAR methods, with a 3.07% MAE reduction, 0.18% SSIM increase, and 0.90% PSNR improvement, confirming robustness across varying artifact complexities. Furthermore, evaluations on real-world clinical CT scans confirm FIND-Net's ability to minimize modifications to clean anatomical regions while effectively suppressing metal-induced distortions. These findings highlight FIND-Net's potential for advancing MAR performance, offering superior structural preservation and improved clinical applicability. Code is available at https://github.com/Farid-Tasharofi/FIND-Net

Instantaneous T<sub>2</sub> Mapping via Reduced Field of View Multiple Overlapping-Echo Detachment Imaging: Application in Free-Breathing Abdominal and Myocardial Imaging.

Dai C, Cai C, Wu J, Zhu L, Qu X, Yang Q, Zhou J, Cai S

pubmed logopapersAug 14 2025
Quantitative magnetic resonance imaging (qMRI) has attracted more and more attention in clinical diagnosis and medical sciences due to its capability to non-invasively characterize tissue properties. Nevertheless, most qMRI methods are time-consuming and sensitive to motion, making them inadequate for quantifying organs with physiological movement. In this context, single-shot multiple overlapping-echo detachment (MOLED) imaging technique has been presented, but its acquisition efficiency and image quality are limited when the field of view (FOV) is smaller than the object, especially for abdominal organs and myocardium. A novel single-shot reduced FOV qMRI method was developed based on MOLED (termed rFOV-MOLED). This method combines zonal oblique multislice (ZOOM) and outer volume suppression (OVS) techniques to reduce the FOV and suppress signals outside the FOV. A deep neural network was trained using synthetic data generated from Bloch simulations to achieve high-quality T<sub>2</sub> map reconstruction from rFOV-MOLED iamges. Numerical simulation, water phantom and in vivo abdominal and myocardial imaging experiments were performed to evaluate the method. The coefficient of variation and repeatability index were used to evaluate the reproducibility. Multiple statistical analyses were utilized to evaluate the accuracy and significance of the method, including linear regression, Bland-Altman analysis, Wilcoxon signed-rank test, and Mann-Whitney U test, with the p-value significance level of 0.05. Experimental results show that rFOV-MOLED achieved excellent performance in reducing aliasing signals due to FOV reduction. It provided T<sub>2</sub> maps closely resembling the reference maps. Moreover, it gave finer tissue details than MOLED and was quite repeatable. rFOV-MOLED can ultrafast and stably provide accurate T2 maps for myocardium and specific abdominal organs with improved acquisition efficiency and image quality.

Enhancing cardiac MRI reliability at 3 T using motion-adaptive B<sub>0</sub> shimming.

Huang Y, Malagi AV, Li X, Guan X, Yang CC, Huang LT, Long Z, Zepeda J, Zhang X, Yoosefian G, Bi X, Gao C, Shang Y, Binesh N, Lee HL, Li D, Dharmakumar R, Han H, Yang HR

pubmed logopapersAug 14 2025
Magnetic susceptibility differences at the heart-lung interface introduce B<sub>0</sub>-field inhomogeneities that challenge cardiac MRI at high field strengths (≥ 3 T). Although hardware-based shimming has advanced, conventional approaches often neglect dynamic variations in thoracic anatomy caused by cardiac and respiratory motion, leading to residual off-resonance artifacts. This study aims to characterize motion-induced B<sub>0</sub>-field fluctuations in the heart and evaluate a deep learning-enabled motion-adaptive B<sub>0</sub> shimming pipeline to mitigate them. A motion-resolved B<sub>0</sub> mapping sequence was implemented at 3 T to quantify cardiac and respiratory-induced B<sub>0</sub> variations. A motion-adaptive shimming framework was then developed and validated through numerical simulations and human imaging studies. B<sub>0</sub>-field homogeneity and T<sub>2</sub>* mapping accuracy were assessed in multiple breath-hold positions using standard and motion-adaptive shimming. Respiratory motion significantly altered myocardial B<sub>0</sub> fields (p < 0.01), whereas cardiac motion had minimal impact (p = 0.49). Compared with conventional scanner shimming, motion-adaptive B<sub>0</sub> shimming yielded significantly improved field uniformity across both inspiratory (post-shim SD<sub>ratio</sub>: 0.68 ± 0.10 vs. 0.89 ± 0.11; p < 0.05) and expiratory (0.65 ± 0.16 vs. 0.84 ± 0.20; p < 0.05) breath-hold states. Corresponding improvements in myocardial T<sub>2</sub>* map homogeneity were observed, with reduced coefficient of variation (0.44 ± 0.19 vs. 0.39 ± 0.22; 0.59 ± 0.30 vs. 0.46 ± 0.21; both p < 0.01). The proposed motion-adaptive B<sub>0</sub> shimming approach effectively compensates for respiration-induced B<sub>0</sub> fluctuations, enhancing field homogeneity and reducing off-resonance artifacts. This strategy improves the robustness and reproducibility of T<sub>2</sub>* mapping, enabling more reliable high-field cardiac MRI.

Cross-view Generalized Diffusion Model for Sparse-view CT Reconstruction

Jixiang Chen, Yiqun Lin, Yi Qin, Hualiang Wang, Xiaomeng Li

arxiv logopreprintAug 14 2025
Sparse-view computed tomography (CT) reduces radiation exposure by subsampling projection views, but conventional reconstruction methods produce severe streak artifacts with undersampled data. While deep-learning-based methods enable single-step artifact suppression, they often produce over-smoothed results under significant sparsity. Though diffusion models improve reconstruction via iterative refinement and generative priors, they require hundreds of sampling steps and struggle with stability in highly sparse regimes. To tackle these concerns, we present the Cross-view Generalized Diffusion Model (CvG-Diff), which reformulates sparse-view CT reconstruction as a generalized diffusion process. Unlike existing diffusion approaches that rely on stochastic Gaussian degradation, CvG-Diff explicitly models image-domain artifacts caused by angular subsampling as a deterministic degradation operator, leveraging correlations across sparse-view CT at different sample rates. To address the inherent artifact propagation and inefficiency of sequential sampling in generalized diffusion model, we introduce two innovations: Error-Propagating Composite Training (EPCT), which facilitates identifying error-prone regions and suppresses propagated artifacts, and Semantic-Prioritized Dual-Phase Sampling (SPDPS), an adaptive strategy that prioritizes semantic correctness before detail refinement. Together, these innovations enable CvG-Diff to achieve high-quality reconstructions with minimal iterations, achieving 38.34 dB PSNR and 0.9518 SSIM for 18-view CT using only \textbf{10} steps on AAPM-LDCT dataset. Extensive experiments demonstrate the superiority of CvG-Diff over state-of-the-art sparse-view CT reconstruction methods. The code is available at https://github.com/xmed-lab/CvG-Diff.

Comparative evaluation of supervised and unsupervised deep learning strategies for denoising hyperpolarized <sup>129</sup>Xe lung MRI.

Bdaiwi AS, Willmering MM, Hussain R, Hysinger E, Woods JC, Walkup LL, Cleveland ZI

pubmed logopapersAug 14 2025
Reduced signal-to-noise ratio (SNR) in hyperpolarized <sup>129</sup>Xe MR images can affect accurate quantification for research and diagnostic evaluations. Thus, this study explores the application of supervised deep learning (DL) denoising, traditional (Trad) and Noise2Noise (N2N) and unsupervised Noise2void (N2V) approaches for <sup>129</sup>Xe MR imaging. The DL denoising frameworks were trained and tested on 952 <sup>129</sup>Xe MRI data sets (421 ventilation, 125 diffusion-weighted, and 406 gas-exchange acquisitions) from healthy subjects and participants with cardiopulmonary conditions and compared with the block matching 3D denoising technique. Evaluation involved mean signal, noise standard deviation (SD), SNR, and sharpness. Ventilation defect percentage (VDP), apparent diffusion coefficient (ADC), membrane uptake, red blood cell (RBC) transfer, and RBC:Membrane were also evaluated for ventilation, diffusion, and gas-exchange images, respectively. Denoising methods significantly reduced noise SDs and enhanced SNR (p < 0.05) across all imaging types. Traditional ventilation model (Trad<sub>vent</sub>) improved sharpness in ventilation images but underestimated VDP (bias = -1.37%) relative to raw images, whereas N2N<sub>vent</sub> overestimated VDP (bias = +1.88%). Block matching 3D and N2V<sub>vent</sub> showed minimal VDP bias (≤ 0.35%). Denoising significantly reduced ADC mean and SD (p < 0.05, bias ≤ - 0.63 × 10<sup>-2</sup>). The values of Trad<sub>vent</sub> and N2N<sub>vent</sub> increased mean membrane and RBC (p < 0.001) with no change in RBC:Membrane. Denoising also reduced SDs of all gas-exchange metrics (p < 0.01). Low SNR may impair the potential of <sup>129</sup>Xe MRI for clinical diagnosis and lung function assessment. The evaluation of supervised and unsupervised DL denoising methods enhanced <sup>129</sup>Xe imaging quality, offering promise for improved clinical interpretation and diagnosis.

Using deep learning methods to shorten acquisition time in children's renal cortical imaging

Gan, C., Niu, P., Pan, B., Chen, X., Xu, L., Huang, K., Chen, H., Wang, Q., Ding, L., Yin, Y., Wu, S., Gong, N.-j.

medrxiv logopreprintAug 13 2025
PurposeThis study evaluates the capability of diffusion-based generative models to reconstruct diagnostic-quality renal cortical images from reduced-acquisition-time pediatric 99mTc-DMSA scintigraphy. Materials and MethodsA prospective study was conducted on 99mTc-DMSA scintigraphic data from consecutive pediatric patients with suspected urinary tract infections (UTIs) acquired between November 2023 and October 2024. A diffusion model SR3 was trained to reconstruct standard-quality images from simulated reduced-count data. Performance was benchmarked against U-Net, U2-Net, Restormer, and a Poisson-based variant of SR3 (PoissonSR3). Quantitative assessment employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Frechet inception distance (FID), and learned perceptual image patch similarity (LPIPS). Renal contrast and anatomic fidelity were assessed using the target-to-background ratio (TBR) and the Dice similarity coefficient respectively. Wilcoxon signed-rank tests were used for statistical analysis. ResultsThe training cohort comprised 94 participants (mean age 5.16{+/-}3.90 years; 48 male) with corresponding Poisson-downsampled images, while the test cohort included 36 patients (mean age 6.39{+/-}3.16 years; 14 male). SR3 outperformed all models, achieving the highest PSNR (30.976{+/-}2.863, P<.001), SSIM (0.760{+/-}0.064, P<.001), FID (25.687{+/-}16.223, P<.001), and LPIPS (0.055{+/-}0.022, P<.001). Further, SR3 maintained excellent renal contrast (TBR: left kidney 7.333{+/-}2.176; right kidney 7.156{+/-}1.808) and anatomical consistency (Dice coefficient: left kidney 0.749{+/-}0.200; right kidney 0.745{+/-}0.176), representing significant improvements over the fast scan (all P < .001). While Restormer, U-Net, and PoissonSR3 showed statistically significant improvements across all metrics, U2-Net exhibited limited improvement restricted to SSIM and left kidney TBR (P < .001). ConclusionSR3 enables high-quality reconstruction of 99mTc-DMSA images from 4-fold accelerated acquisitions, demonstrating potential for substantial reduction in imaging duration while preserving both diagnostic image quality and renal anatomical integrity.

MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography

Daniel Barco, Marc Stadelmann, Martin Oswald, Ivo Herzig, Lukas Lichtensteiger, Pascal Paysan, Igor Peterlik, Michal Walczak, Bjoern Menze, Frank-Peter Schilling

arxiv logopreprintAug 13 2025
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.
Page 15 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.