Sort by:
Page 146 of 1701699 results

An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.

Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L

pubmed logopapersMay 21 2025
Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).

Update on the detection of frailty in older adults: a multicenter cohort machine learning-based study protocol.

Fernández-Carnero S, Martínez-Pozas O, Pecos-Martín D, Pardo-Gómez A, Cuenca-Zaldívar JN, Sánchez-Romero EA

pubmed logopapersMay 21 2025
This study aims to investigate the relationship between muscle activation variables assessed via ultrasound and the comprehensive assessment of geriatric patients, as well as to analyze ultrasound images to determine their correlation with morbimortality factors in frail patients. The present cohort study will be conducted in 500 older adults diagnosed with frailty. A multicenter study will be conducted among the day care centers and nursing homes. This will be achieved through the evaluation of frail older adults via instrumental and functional tests, along with specific ultrasound images to study sarcopenia and nutrition, followed by a detailed analysis of the correlation between all collected variables. This study aims to investigate the correlation between ultrasound-assessed muscle activation variables and the overall health of geriatric patients. It addresses the limitations of previous research by including a large sample size of 500 patients and measuring various muscle parameters beyond thickness. Additionally, it aims to analyze ultrasound images to identify markers associated with higher risk of complications in frail patients. The study involves frail older adults undergoing functional tests and specific ultrasound examinations. A comprehensive analysis of functional, ultrasound, and nutritional variables will be conducted to understand their correlation with overall health and risk of complications in frail older patients. The study was approved by the Research Ethics Committee of the Hospital Universitario Puerta de Hierro, Madrid, Spain (Act nº 18/2023). In addition, the study was registered with https://clinicaltrials.gov/ (NCT06218121).

Mammography-based artificial intelligence for breast cancer detection, diagnosis, and BI-RADS categorization using multi-view and multi-level convolutional neural networks.

Tan H, Wu Q, Wu Y, Zheng B, Wang B, Chen Y, Du L, Zhou J, Fu F, Guo H, Fu C, Ma L, Dong P, Xue Z, Shen D, Wang M

pubmed logopapersMay 21 2025
We developed an artificial intelligence system (AIS) using multi-view multi-level convolutional neural networks for breast cancer detection, diagnosis, and BI-RADS categorization support in mammography. Twenty-four thousand eight hundred sixty-six breasts from 12,433 Asian women between August 2012 and December 2018 were enrolled. The study consisted of three parts: (1) evaluation of AIS performance in malignancy diagnosis; (2) stratified analysis of BI-RADS 3-4 subgroups with AIS; and (3) reassessment of BI-RADS 0 breasts with AIS assistance. We further evaluate AIS by conducting a counterbalance-designed AI-assisted study, where ten radiologists read 1302 cases with/without AIS assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and F1 score were measured. The AIS yielded AUC values of 0.995, 0.933, and 0.947 for malignancy diagnosis in the validation set, testing set 1, and testing set 2, respectively. Within BI-RADS 3-4 subgroups with pathological results, AIS downgraded 83.1% of false-positives into benign groups, and upgraded 54.1% of false-negatives into malignant groups. AIS also successfully assisted radiologists in identifying 7 out of 43 malignancies initially diagnosed with BI-RADS 0, with a specificity of 96.7%. In the counterbalance-designed AI-assisted study, the average AUC across ten readers significantly improved with AIS assistance (p = 0.001). AIS can accurately detect and diagnose breast cancer on mammography and further serve as a supportive tool for BI-RADS categorization. An AI risk assessment tool employing deep learning algorithms was developed and validated for enhancing breast cancer diagnosis from mammograms, to improve risk stratification accuracy, particularly in patients with dense breasts, and serve as a decision support aid for radiologists. The false positive and negative rates of mammography diagnosis remain high. The AIS can yield a high AUC for malignancy diagnosis. The AIS is important in stratifying BI-RADS categorization.

VET-DINO: Learning Anatomical Understanding Through Multi-View Distillation in Veterinary Imaging

Andre Dourson, Kylie Taylor, Xiaoli Qiao, Michael Fitzke

arxiv logopreprintMay 21 2025
Self-supervised learning has emerged as a powerful paradigm for training deep neural networks, particularly in medical imaging where labeled data is scarce. While current approaches typically rely on synthetic augmentations of single images, we propose VET-DINO, a framework that leverages a unique characteristic of medical imaging: the availability of multiple standardized views from the same study. Using a series of clinical veterinary radiographs from the same patient study, we enable models to learn view-invariant anatomical structures and develop an implied 3D understanding from 2D projections. We demonstrate our approach on a dataset of 5 million veterinary radiographs from 668,000 canine studies. Through extensive experimentation, including view synthesis and downstream task performance, we show that learning from real multi-view pairs leads to superior anatomical understanding compared to purely synthetic augmentations. VET-DINO achieves state-of-the-art performance on various veterinary imaging tasks. Our work establishes a new paradigm for self-supervised learning in medical imaging that leverages domain-specific properties rather than merely adapting natural image techniques.

Adversarial artificial intelligence in radiology: Attacks, defenses, and future considerations.

Dietrich N, Gong B, Patlas MN

pubmed logopapersMay 21 2025
Artificial intelligence (AI) is rapidly transforming radiology, with applications spanning disease detection, lesion segmentation, workflow optimization, and report generation. As these tools become more integrated into clinical practice, new concerns have emerged regarding their vulnerability to adversarial attacks. This review provides an in-depth overview of adversarial AI in radiology, a topic of growing relevance in both research and clinical domains. It begins by outlining the foundational concepts and model characteristics that make machine learning systems particularly susceptible to adversarial manipulation. A structured taxonomy of attack types is presented, including distinctions based on attacker knowledge, goals, timing, and computational frequency. The clinical implications of these attacks are then examined across key radiology tasks, with literature highlighting risks to disease classification, image segmentation and reconstruction, and report generation. Potential downstream consequences such as patient harm, operational disruption, and loss of trust are discussed. Current mitigation strategies are reviewed, spanning input-level defenses, model training modifications, and certified robustness approaches. In parallel, the role of broader lifecycle and safeguard strategies are considered. By consolidating current knowledge across technical and clinical domains, this review helps identify gaps, inform future research priorities, and guide the development of robust, trustworthy AI systems in radiology.

Predictive machine learning and multimodal data to develop highly sensitive, composite biomarkers of disease progression in Friedreich ataxia.

Saha S, Corben LA, Selvadurai LP, Harding IH, Georgiou-Karistianis N

pubmed logopapersMay 21 2025
Friedreich ataxia (FRDA) is a rare, inherited progressive movement disorder for which there is currently no cure. The field urgently requires more sensitive, objective, and clinically relevant biomarkers to enhance the evaluation of treatment efficacy in clinical trials and to speed up the process of drug discovery. This study pioneers the development of clinically relevant, multidomain, fully objective composite biomarkers of disease severity and progression, using multimodal neuroimaging and background data (i.e., demographic, disease history, genetics). Data from 31 individuals with FRDA and 31 controls from a longitudinal multimodal natural history study IMAGE-FRDA, were included. Using an elasticnet predictive machine learning (ML) regression model, we derived a weighted combination of background, structural MRI, diffusion MRI, and quantitative susceptibility imaging (QSM) measures that predicted Friedreich ataxia rating scale (FARS) with high accuracy (R<sup>2</sup> = 0.79, root mean square error (RMSE) = 13.19). This composite also exhibited strong sensitivity to disease progression over two years (Cohen's d = 1.12), outperforming the sensitivity of the FARS score alone (d = 0.88). The approach was validated using the Scale for the assessment and rating of ataxia (SARA), demonstrating the potential and robustness of ML-derived composites to surpass individual biomarkers and act as complementary or surrogate markers of disease severity and progression. However, further validation, refinement, and the integration of additional data modalities will open up new opportunities for translating these biomarkers into clinical practice and clinical trials for FRDA, as well as other rare neurodegenerative diseases.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection

Shuvashis Sarker, Shamim Rahim Refat, Faika Fairuj Preotee, Shifat Islam, Tashreef Muhammad, Mohammad Ashraful Hoque

arxiv logopreprintMay 21 2025
The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.

Enhancing pathological myopia diagnosis: a bimodal artificial intelligence approach integrating fundus and optical coherence tomography imaging for precise atrophy, traction and neovascularisation grading.

Xu Z, Yang Y, Chen H, Han R, Han X, Zhao J, Yu W, Yang Z, Chen Y

pubmed logopapersMay 20 2025
Pathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM. This single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities. Performance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model. Our novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.

A 3D deep learning model based on MRI for predicting lymphovascular invasion in rectal cancer.

Wang T, Chen C, Liu C, Li S, Wang P, Yin D, Liu Y

pubmed logopapersMay 20 2025
The assessment of lymphovascular invasion (LVI) is crucial in the management of rectal cancer; However, accurately evaluating LVI preoperatively using imaging remains challenging. Recent advances in radiomics have created opportunities for developing more accurate diagnostic tools. This study aimed to develop and validate a deep learning model for predicting LVI in rectal cancer patients using preoperative MR imaging. These cases were randomly divided into a training cohort (n = 233) and an validation cohort (n = 101) at a ratio of 7:3. Based on the pathological reports, the patients were classified into positive and negative groups according to their LVI status. Based on the preoperative MRI T2WI axial images, the regions of interest (ROI) were defined from the tumor itself and the edges of the tumor extending outward by 5 pixels, 10 pixels, 15 pixels, and 20 pixels. The 2D and 3D deep learning features were extracted using the DenseNet121 architecture, and the deep learning models were constructed, including a total of ten models: GTV (the tumor itself), GPTV5 (the tumor itself and the tumor extending outward by 5 pixels), GPTV10, GPTV15, and GPTV20. To assess model performance, we utilized the area under the curve (AUC) and conducted DeLong test to compare different models, aiming to identify the optimal model for predicting LVI in rectal cancer. In the 2D deep learning model group, the 2D GPTV10 model demonstrated superior performance with an AUC of 0.891 (95% confidence interval [CI] 0.850-0.933) in the training cohort and an AUC of 0.841 (95% CI 0.767-0.915) in the validation cohort. The difference in AUC between this model and other 2D models was not statistically significant based on DeLong test (p > 0.05); In the group of 3D deep learning models, the 3D GPTV10 model had the highest AUC, with a training cohort AUC of 0.961 (95% CI 0.940-0.982) and a validation cohort AUC of 0.928 (95% CI 0.881-0.976). DeLong test demonstrated that the performance of the 3D GPTV10 model surpassed other 3D models as well as the 2D GPTV10 model (p < 0.05). The study developed a deep learning model, namely 3D GPTV10, utilizing preoperative MRI data to accurately predict the presence of LVI in rectal cancer patients. By training on the tumor itself and its surrounding margin 10 pixels as the region of interest, this model achieved superior performance compared to other deep learning models. These findings have significant implications for clinicians in formulating personalized treatment plans for rectal cancer patients.
Page 146 of 1701699 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.