Sort by:
Page 14 of 22212 results

A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR.

Allaw S, Khabaz K, Given TC, Montas D, Alcazar-Felix RJ, Srinath A, Kass-Hout T, Carroll TJ, Hurley MC, Polster SP

pubmed logopapersJun 3 2025
Traditional guidance for intracranial aneurysm (IA) management is dichotomized by rupture status. Fundamental to the management of ruptured aneurysm is the detection and treatment of SAH, along with securing the aneurysm by the safest technique. On the other hand, unruptured aneurysms first require a careful assessment of their natural history versus treatment risk, including an imaging assessment of aneurysm size, location, and morphology, along with additional evidence-based risk factors such as smoking, hypertension, and family history. Unfortunately, a large proportion of ruptured aneurysms are in the lower risk size category (<7 mm), putting a premium on discovering a more refined noninvasive biomarker to detect and stratify aneurysm instability before rupture. In this review of aneurysm work-up, we cover the gamut of established imaging modalities (eg, CT, CTA, DSA, FLAIR, 3D TOF-MRA, contrast-enhanced-MRA) as well as more novel MR techniques (MR vessel wall imaging, dynamic contrast-enhanced MRI, computational fluid dynamics). Additionally, we evaluate the current landscape of artificial intelligence software and its integration into diagnostic and risk-stratification pipelines for IAs. These advanced MR techniques, increasingly complemented with artificial intelligence models, offer a paradigm shift by evaluating factors beyond size and morphology, including vessel wall inflammation, permeability, and hemodynamics. Additionally, we provide our institution's scan parameters for many of these modalities as a reference. Ultimately, this review provides an organized, up-to-date summary of the array of available modalities/sequences for IA imaging to help build protocols focused on IA characterization.

Lymph node ultrasound in lymphoproliferative disorders: clinical characteristics and applications.

Tavarozzi R, Lombardi A, Scarano F, Staiano L, Trattelli G, Farro M, Castellino A, Coppola C

pubmed logopapersJun 3 2025
Superficial lymph node (LN) enlargement is a common ultrasonographic finding and can be associated with a broad spectrum of conditions, from benign reactive hyperplasia to malignant lymphoproliferative disorders (LPDs). LPDs, which include various hematologic malignancies affecting lymphoid tissue, present with diverse immune-morphological and clinical features, making differentiation from other malignant causes of lymphadenopathy challenging. Radiologic assessment is crucial in characterizing lymphadenopathy, with ultrasonography serving as a noninvasive and widely available imaging modality. High-resolution ultrasound allows the evaluation of key features such as LN size, shape, border definition, echogenicity, and the presence of abnormal cortical thickening, loss of the fatty hilum, or altered vascular patterns, which aid in distinguishing benign from malignant processes. This review aims to describe the ultrasonographic characteristics of lymphadenopathy, offering essential diagnostic insights to differentiate malignant disorders, particularly LPDs. We will discuss standard ultrasound techniques, including grayscale imaging and Doppler ultrasound, and explore more advanced methods such as contrast-enhanced ultrasound (CEUS), elastography, and artificial intelligence-assisted imaging, which are gaining prominence in LN evaluation. By highlighting these imaging modalities, we aim to enhance the diagnostic accuracy of ultrasonography in lymphadenopathy assessment and improve early detection of LPDs and other malignant conditions.

Artificial intelligence in bone metastasis analysis: Current advancements, opportunities and challenges.

Afnouch M, Bougourzi F, Gaddour O, Dornaika F, Ahmed AT

pubmed logopapersJun 3 2025
Artificial Intelligence is transforming medical imaging, particularly in the analysis of bone metastases (BM), a serious complication of advanced cancers. Machine learning and deep learning techniques offer new opportunities to improve detection, recognition, and segmentation of bone metastasis. Yet, challenges such as limited data, interpretability, and clinical validation remain. Following PRISMA guidelines, we reviewed artificial intelligence methods and applications for bone metastasis analysis across major imaging modalities including CT, MRI, PET, SPECT, and bone scintigraphy. The survey includes traditional machine learning models and modern deep learning architectures such as CNNs and transformers. We also examined available datasets and their effect in developing artificial intelligence in this field. Artificial intelligence models have achieved strong performance across tasks and modalities, with Convolutional Neural Network (CNN) and Transformer architectures showing particularly efficient performance across different tasks. However, limitations persist, including data imbalance, overfitting risks, and the need for greater transparency. Clinical translation is also challenged by regulatory and validation hurdles. Artificial intelligence holds strong potential to improve BM diagnosis and streamline radiology workflows. To reach clinical maturity, future work must address data diversity, model explainability, and large-scale validation, which are critical steps for being trusted to be integrated into the oncology care routines.

Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Yahaya BS, Osman ND, Karim NKA, Appalanaido GK, Isa IS

pubmed logopapersJun 3 2025
Computed tomography (CT) has been widely used as an effective tool for liver imaging due to its high spatial resolution, and ability to differentiate tissue densities, which contributing to comprehensive image analysis. Recent advancements in artificial intelligence (AI) promoted the role of Machine Learning (ML) in managing liver cancers by predicting or classifying tumours using mathematical algorithms. Deep learning (DL), a subset of ML, expanded these capabilities through convolutional neural networks (CNN) that analyse large data automatically. This review examines methods, achievements, limitations, and performance outcomes of ML-based radiomics and DL models for liver malignancies from CT imaging. A systematic search for full-text articles in English on CT radiomics and DL in liver cancer analysis was conducted in PubMed, Scopus, Science Citation Index, and Cochrane Library databases between 2020 and 2024 using the keywords; machine learning, radiomics, deep learning, computed tomography, liver cancer and associated MESH terms. PRISMA guidelines were used to identify and screen studies for inclusion. A total of 49 studies were included consisting of 17 Radiomics, 24 DL, and 8 combined DL/Radiomics studies. Radiomics has been predominantly utilised for predictive analysis, while DL has been extensively applied to automatic liver and tumour segmentation with a surge of a recent increase in studies integrating both techniques. Despite the growing popularity of DL methods, classical radiomics models are still relevant and often preferred over DL methods when performance is similar, due to lower computational and data needs. Performance of models keep improving, but challenges like data scarcity and lack of standardised protocols persists.

Computer-Aided Decision Support Systems of Alzheimer's Disease Diagnosis - A Systematic Review.

Günaydın T, Varlı S

pubmed logopapersJun 3 2025
The incidence of Alzheimer's disease is rising with the increasing elderly population worldwide. While no cure exists, early diagnosis can significantly slow disease progression. Computer-aided diagnostic systems are becoming critical tools for assisting in the early detection of Alzheimer's disease. In this systematic review, we aim to evaluate recent advancements in computer-aided decision support systems for Alzheimer's disease diagnosis, focusing on data modalities, machine learning methods, and performance metrics. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies published between 2021 and 2024 were retrieved from PubMed, IEEEXplore and Web of Science, using search terms related to Alzheimer's disease classification, neuroimaging, machine learning, and diagnostic performance. A total of 39 studies met the inclusion criteria, focusing on the use of Magnetic Resonance Imaging, Positron Emission Tomography, and biomarkers for Alzheimer's disease classification using machine learning models. Multimodal approaches, combining Magnetic Resonance Imaging with Positron Emission Tomography and Cognitive assessments, outperformed single-modality studies in diagnostic accuracy reliability. Convolutional Neural Networks were the most commonly used machine learning models, followed by hybrid models and Random Forest. The highest accuracy reported for binary classification was 100%, while multi-class classification achieved up to 99.98%. Techniques like Synthetic Minority Over-sampling Technique and data augmentation were frequently employed to address data imbalance, improving model generalizability. Our review highlights the advantages of using multimodal data in computer-aided decision support systems for more accurate Alzheimer's disease diagnosis. However, we also identified several limitations, including data imbalance, small sample sizes, and the lack of external validation in most studies. Future research should utilize larger, more diverse datasets, incorporate longitudinal data, and validate models in real-world clinical trials. Additionally, there is a growing need for explainability in machine learning models to ensure they are interpretable and trusted in clinical settings. While computer-aided decision support systems show great promise in improving the early diagnosis of Alzheimer's disease, further work is needed to enhance their robustness, generalizability, and clinical applicability. By addressing these challenges, computer-aided decision support systems could play a pivotal role in the early detection and management of Alzheimer's disease, potentially improving patient outcomes and reducing healthcare costs.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.

Implicit neural representation for medical image reconstruction.

Zhu Y, Liu Y, Zhang Y, Liang D

pubmed logopapersJun 2 2025
Medical image reconstruction aims to generate high-quality images from sparsely sampled raw sensor data, which poses an ill-posed inverse problem. Traditional iterative reconstruction methods rely on prior information to empirically construct regularization terms, a process that is not trivial. While deep learning (DL)-based supervised reconstruction has made significant progress in improving image quality, it requires large-scale training data, which is difficult to obtain in medical imaging. Recently, implicit neural representation (INR) has emerged as a promising approach, offering a flexible and continuous representation of images by modeling the underlying signal as a function of spatial coordinates. This allows INR to capture fine details and complex structures more effectively than conventional discrete methods. This paper provides a comprehensive review of INR-based medical image reconstruction techniques, highlighting its growing impact on the field. The benefits of INR in both image and measurement domains are presented, and its advantages, limitations, and future research directions are discussed.&#xD.

[Capabilities and Advances of Transrectal Ultrasound in 2025].

Kaufmann S, Kruck S

pubmed logopapersJun 1 2025
Transrectal ultrasound, particularly in the combination of high-frequency ultrasound and MR-TRUS fusion technologies, provides a highly precise and effective method for correlation and targeted biopsy of suspicious intraprostatic lesions detected by MRI. Advances in imaging technology, driven by 29 Mhz micro-ultrasound transducers, robotic-assisted systems, and the integration of AI-based analyses, promise further improvements in diagnostic accuracy and a reduction in unnecessary biopsies. Further technological advancements and improved TRUS training could contribute to a decentralized and cost-effective diagnostic evaluation of prostate cancer in the future.

Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.

Wang R, Chen F, Chen H, Lin C, Shuai J, Wu Y, Ma L, Hu X, Wu M, Wang J, Zhao Q, Shuai J, Pan J

pubmed logopapersJun 1 2025
The high-resolution three-dimensional (3D) images generated with digital breast tomosynthesis (DBT) in the screening of breast cancer offer new possibilities for early disease diagnosis. Early detection is especially important as the incidence of breast cancer increases. However, DBT also presents challenges in terms of poorer results for dense breasts, increased false positive rates, slightly higher radiation doses, and increased reading times. Deep learning (DL) has been shown to effectively increase the processing efficiency and diagnostic accuracy of DBT images. This article reviews the application and outlook of DL in DBT-based breast cancer screening. First, the fundamentals and challenges of DBT technology are introduced. The applications of DL in DBT are then grouped into three categories: diagnostic classification of breast diseases, lesion segmentation and detection, and medical image generation. Additionally, the current public databases for mammography are summarized in detail. Finally, this paper analyzes the main challenges in the application of DL techniques in DBT, such as the lack of public datasets and model training issues, and proposes possible directions for future research, including large language models, multisource domain transfer, and data augmentation, to encourage innovative applications of DL in medical imaging.
Page 14 of 22212 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.