Sort by:
Page 109 of 1311307 results

Automated whole-breast ultrasound tumor diagnosis using attention-inception network.

Zhang J, Huang YS, Wang YW, Xiang H, Lin X, Chang RF

pubmed logopapersMay 14 2025
Automated Whole-Breast Ultrasound (ABUS) has been widely used as an important tool in breast cancer diagnosis due to the ability of this technique to provide complete three-dimensional (3D) images of breasts. To eliminate the risk of misdiagnosis, computer-aided diagnosis (CADx) systems have been proposed to assist radiologists. Convolutional neural networks (CNNs), renowned for the automatic feature extraction capabilities, have developed rapidly in medical image analysis, and this study proposes a CADx system based on 3D CNN for ABUS. This study used a private dataset collected at Sun Yat-Sen University Cancer Center (SYSUCC) from 396 breast tumor patients. First, the tumor volume of interest (VOI) was extracted and resized, and then the tumor was enhanced by histogram equalization. Second, a 3D U-Net++ was employed to segment the tumor mask. Finally, the VOI, the enhanced VOI, and the corresponding tumor mask were fed into a 3D Attention-Inception network to classify the tumor as benign or malignant. The experiment results indicate an accuracy of 89.4%, a sensitivity of 91.2%, a specificity of 87.6%, and an area under the receiver operating characteristic curve (AUC) of 0.9262, which suggests that the proposed CADx system for ABUS images rivals the performance of experienced radiologists in tumor diagnosis tasks. This study proposes a CADx system consisting of a 3D U-Net++ tumor segmentation model and a 3D attention inception neural network tumor classification model for diagnosis in ABUS images. The results indicate that the proposed CADx system is effective and efficient in tumor diagnosis tasks.

A Deep Learning-Driven Inhalation Injury Grading Assistant Using Bronchoscopy Images

Yifan Li, Alan W Pang, Jo Woon Chong

arxiv logopreprintMay 13 2025
Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.

DEMAC-Net: A Dual-Encoder Multiattention Collaborative Network for Cervical Nerve Pathway and Adjacent Anatomical Structure Segmentation.

Cui H, Duan J, Lin L, Wu Q, Guo W, Zang Q, Zhou M, Fang W, Hu Y, Zou Z

pubmed logopapersMay 13 2025
Currently, cervical anesthesia is performed using three main approaches: superficial cervical plexus block, deep cervical plexus block, and intermediate plexus nerve block. However, each technique carries inherent risks and demands significant clinical expertise. Ultrasound imaging, known for its real-time visualization capabilities and accessibility, is widely used in both diagnostic and interventional procedures. Nevertheless, accurate segmentation of small and irregularly shaped structures such as the cervical and brachial plexuses remains challenging due to image noise, complex anatomical morphology, and limited annotated training data. This study introduces DEMAC-Net-a dual-encoder, multiattention collaborative network-to significantly improve the segmentation accuracy of these neural structures. By precisely identifying the cervical nerve pathway (CNP) and adjacent anatomical tissues, DEMAC-Net aims to assist clinicians, especially those less experienced, in effectively guiding anesthesia procedures and accurately identifying optimal needle insertion points. Consequently, this improvement is expected to enhance clinical safety, reduce procedural risks, and streamline decision-making efficiency during ultrasound-guided regional anesthesia. DEMAC-Net combines a dual-encoder architecture with the Spatial Understanding Convolution Kernel (SUCK) and the Spatial-Channel Attention Module (SCAM) to extract multi-scale features effectively. Additionally, a Global Attention Gate (GAG) and inter-layer fusion modules refine relevant features while suppressing noise. A novel dataset, Neck Ultrasound Dataset (NUSD), was introduced, containing 1,500 annotated ultrasound images across seven anatomical regions. Extensive experiments were conducted on both NUSD and the BUSI public dataset, comparing DEMAC-Net to state-of-the-art models using metrics such as Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). On the NUSD dataset, DEMAC-Net achieved a mean DSC of 93.3%, outperforming existing models. For external validation on the BUSI dataset, it demonstrated superior generalization, achieving a DSC of 87.2% and a mean IoU of 77.4%, surpassing other advanced methods. Notably, DEMAC-Net displayed consistent segmentation stability across all tested structures. The proposed DEMAC-Net significantly improves segmentation accuracy for small nerves and complex anatomical structures in ultrasound images, outperforming existing methods in terms of accuracy and computational efficiency. This framework holds great potential for enhancing ultrasound-guided procedures, such as peripheral nerve blocks, by providing more precise anatomical localization, ultimately improving clinical outcomes.

Deep Learning-Derived Cardiac Chamber Volumes and Mass From PET/CT Attenuation Scans: Associations With Myocardial Flow Reserve and Heart Failure.

Hijazi W, Shanbhag A, Miller RJH, Kavanagh PB, Killekar A, Lemley M, Wopperer S, Knight S, Le VT, Mason S, Acampa W, Rosamond T, Dey D, Berman DS, Chareonthaitawee P, Di Carli MF, Slomka PJ

pubmed logopapersMay 13 2025
Computed tomography (CT) attenuation correction scans are an intrinsic part of positron emission tomography (PET) myocardial perfusion imaging using PET/CT, but anatomic information is rarely derived from these ultralow-dose CT scans. We aimed to assess the association between deep learning-derived cardiac chamber volumes (right atrial, right ventricular, left ventricular, and left atrial) and mass (left ventricular) from these scans with myocardial flow reserve and heart failure hospitalization. We included 18 079 patients with consecutive cardiac PET/CT from 6 sites. A deep learning model estimated cardiac chamber volumes and left ventricular mass from computed tomography attenuation correction imaging. Associations between deep learning-derived CT mass and volumes with heart failure hospitalization and reduced myocardial flow reserve were assessed in a multivariable analysis. During a median follow-up of 4.3 years, 1721 (9.5%) patients experienced heart failure hospitalization. Patients with 3 or 4 abnormal chamber volumes were 7× more likely to be hospitalized for heart failure compared with patients with normal volumes. In adjusted analyses, left atrial volume (hazard ratio [HR], 1.25 [95% CI, 1.19-1.30]), right atrial volume (HR, 1.29 [95% CI, 1.23-1.35]), right ventricular volume (HR, 1.25 [95% CI, 1.20-1.31]), left ventricular volume (HR, 1.27 [95% CI, 1.23-1.35]), and left ventricular mass (HR, 1.25 [95% CI, 1.18-1.32]) were independently associated with heart failure hospitalization. In multivariable analyses, left atrial volume (odds ratio, 1.14 [95% CI, 1.0-1.19]) and ventricular mass (odds ratio, 1.12 [95% CI, 1.6-1.17]) were independent predictors of reduced myocardial flow reserve. Deep learning-derived chamber volumes and left ventricular mass from computed tomography attenuation correction were predictive of heart failure hospitalization and reduced myocardial flow reserve in patients undergoing cardiac PET perfusion imaging. This anatomic data can be routinely reported along with other PET/CT parameters to improve risk prediction.

Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results

Meritxell Riera-Marin, Sikha O K, Julia Rodriguez-Comas, Matthias Stefan May, Zhaohong Pan, Xiang Zhou, Xiaokun Liang, Franciskus Xaverius Erick, Andrea Prenner, Cedric Hemon, Valentin Boussot, Jean-Louis Dillenseger, Jean-Claude Nunes, Abdul Qayyum, Moona Mazher, Steven A Niederer, Kaisar Kushibar, Carlos Martin-Isla, Petia Radeva, Karim Lekadir, Theodore Barfoot, Luis C. Garcia Peraza Herrera, Ben Glocker, Tom Vercauteren, Lucas Gago, Justin Englemann, Joy-Marie Kleiss, Anton Aubanell, Andreu Antolin, Javier Garcia-Lopez, Miguel A. Gonzalez Ballester, Adrian Galdran

arxiv logopreprintMay 13 2025
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.

Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer

Antonio Candito, Matthew D Blackledge, Richard Holbrey, Nuria Porta, Ana Ribeiro, Fabio Zugni, Luca D'Erme, Francesca Castagnoli, Alina Dragan, Ricardo Donners, Christina Messiou, Nina Tunariu, Dow-Mu Koh

arxiv logopreprintMay 13 2025
We developed an AI-driven software solution to quantify metastatic bone disease from WB-DWI scans. Core technologies include: (i) a weakly-supervised Residual U-Net model generating a skeleton probability map to isolate bone; (ii) a statistical framework for WB-DWI intensity normalisation, obtaining a signal-normalised b=900s/mm^2 (b900) image; and (iii) a shallow convolutional neural network that processes outputs from (i) and (ii) to generate a mask of suspected bone lesions, characterised by higher b900 signal intensity due to restricted water diffusion. This mask is applied to the gADC map to extract TDV and gADC statistics. We tested the tool using expert-defined metastatic bone disease delineations on 66 datasets, assessed repeatability of imaging biomarkers (N=10), and compared software-based response assessment with a construct reference standard based on clinical, laboratory and imaging assessments (N=118). Dice score between manual and automated delineations was 0.6 for lesions within pelvis and spine, with an average surface distance of 2mm. Relative differences for log-transformed TDV (log-TDV) and median gADC were below 9% and 5%, respectively. Repeatability analysis showed coefficients of variation of 4.57% for log-TDV and 3.54% for median gADC, with intraclass correlation coefficients above 0.9. The software achieved 80.5% accuracy, 84.3% sensitivity, and 85.7% specificity in assessing response to treatment compared to the construct reference standard. Computation time generating a mask averaged 90 seconds per scan. Our software enables reproducible TDV and gADC quantification from WB-DWI scans for monitoring metastatic bone disease response, thus providing potentially useful measurements for clinical decision-making in APC patients.

Segmentation of renal vessels on non-enhanced CT images using deep learning models.

Zhong H, Zhao Y, Zhang Y

pubmed logopapersMay 13 2025
To evaluate the possibility of performing renal vessel reconstruction on non-enhanced CT images using deep learning models. 177 patients' CT scans in the non-enhanced phase, arterial phase and venous phase were chosen. These data were randomly divided into the training set (n = 120), validation set (n = 20) and test set (n = 37). In training set and validation set, a radiologist marked out the right renal arteries and veins on non-enhanced CT phase images using contrast phases as references. Trained deep learning models were tested and evaluated on the test set. A radiologist performed renal vessel reconstruction on the test set without the contrast phase reference, and the results were used for comparison. Reconstruction using the arterial phase and venous phase was used as the gold standard. Without the contrast phase reference, both radiologist and model could accurately identify artery and vein main trunk. The accuracy was 91.9% vs. 97.3% (model vs. radiologist) in artery and 91.9% vs. 100% in vein, the difference was insignificant. The model had difficulty identify accessory arteries, the accuracy was significantly lower than radiologist (44.4% vs. 77.8%, p = 0.044). The model also had lower accuracy in accessory veins, but the difference was insignificant (64.3% vs. 85.7%, p = 0.094). Deep learning models could accurately recognize the right renal artery and vein main trunk, and accuracy was comparable to that of radiologists. Although the current model still had difficulty recognizing small accessory vessels, further training and model optimization would solve these problems.

An automated cascade framework for glioma prognosis via segmentation, multi-feature fusion and classification techniques.

Hamoud M, Chekima NEI, Hima A, Kholladi NH

pubmed logopapersMay 13 2025
Glioma is one of the most lethal types of brain tumors, accounting for approximately 33% of all diagnosed brain tumor cases. Accurate segmentation and classification are crucial for precise glioma characterization, emphasizing early detection of malignancy, effective treatment planning, and prevention of tumor progression. Magnetic Resonance Imaging (MRI) serves as a non-invasive imaging modality that allows detailed examination of gliomas without exposure to ionizing radiation. However, manual analysis of MRI scans is impractical, time-consuming, subjective, and requires specialized expertise from radiologists. To address this, computer-aided diagnosis (CAD) systems have greatly evolved as powerful tools to support neuro-oncologists in the brain cancer screening process. In this work, we present a glioma classification framework based on 3D multi-modal MRI segmentation using the CNN models SegResNet and Swin UNETR which incorporates transformer mechanisms for enhancing segmentation performance. MRI images undergo preprocessing with a Gaussian filter and skull stripping to improve tissue localization. Key textural features are then extracted from segmented tumor regions using Gabor Transform, Discrete Wavelet Transform (DWT), and deep features from ResNet50. These features are fused, normalized, and classified using a Support Vector Machine (SVM) to distinguish between Low-Grade Glioma (LGG) and High-Grade Glioma (HGG). Extensive experiments on benchmark datasets, including BRATS2020 and BRATS2023, demonstrate the effectiveness of the proposed approach. Our model achieved Dice scores of 0.815 for Tumor Core, 0.909 for Whole Tumor, and 0.829 for Enhancing Tumor. Concerning classification, the framework attained 97% accuracy, 94% precision, 96% recall, and a 95% F1-score. These results highlight the potential of the proposed framework to provide reliable support for radiologists in the early detection and classification of gliomas.

Artificial intelligence for chronic total occlusion percutaneous coronary interventions.

Rempakos A, Pilla P, Alexandrou M, Mutlu D, Strepkos D, Carvalho PEP, Ser OS, Bahbah A, Amin A, Prasad A, Azzalini L, Ybarra LF, Mastrodemos OC, Rangan BV, Al-Ogaili A, Jalli S, Burke MN, Sandoval Y, Brilakis ES

pubmed logopapersMay 13 2025
Artificial intelligence (AI) has become pivotal in advancing medical care, particularly in interventional cardiology. Recent AI developments have proven effective in guiding advanced procedures and complex decisions. The authors review the latest AI-based innovations in the diagnosis of chronic total occlusions (CTO) and in determining the probability of success of CTO percutaneous coronary intervention (PCI). Neural networks and deep learning strategies were the most commonly used algorithms, and the models were trained and deployed using a variety of data types, such as clinical parameters and imaging. AI holds great promise in facilitating CTO PCI.

Deep Learning-accelerated MRI in Body and Chest.

Rajamohan N, Bagga B, Bansal B, Ginocchio L, Gupta A, Chandarana H

pubmed logopapersMay 13 2025
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.
Page 109 of 1311307 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.