Sort by:
Page 10 of 26252 results

Preoperative prediction model for benign and malignant gallbladder polyps on the basis of machine-learning algorithms.

Zeng J, Hu W, Wang Y, Jiang Y, Peng J, Li J, Liu X, Zhang X, Tan B, Zhao D, Li K, Zhang S, Cao J, Qu C

pubmed logopapersJun 10 2025
This study aimed to differentiate between benign and malignant gallbladder polyps preoperatively by developing a prediction model integrating preoperative transabdominal ultrasound and clinical features using machine-learning algorithms. A retrospective analysis was conducted on clinical and ultrasound data from 1,050 patients at 2 centers who underwent cholecystectomy for gallbladder polyps. Six machine-learning algorithms were used to develop preoperative models for predicting benign and malignant gallbladder polyps. Internal and external test cohorts evaluated model performance. The Shapley Additive Explanations algorithm was used to understand feature importance. The main study cohort included 660 patients with benign polyps and 285 patients with malignant polyps, randomly divided into a 3:1 stratified training and internal test cohorts. The external test cohorts consisted of 73 benign and 32 malignant polyps. In the training cohort, the Shapley Additive Explanations algorithm, on the basis of variables selected by Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression, further identified 6 key predictive factors: polyp size, age, fibrinogen, carbohydrate antigen 19-9, presence of stones, and cholinesterase. Using these factors, 6 predictive models were developed. The random forest model outperformed others, with an area under the curve of 0.963, 0.940, and 0.958 in the training, internal, and external test cohorts, respectively. Compared with previous studies, the random forest model demonstrated excellent clinical utility and predictive performance. In addition, the Shapley Additive Explanations algorithm was used to visualize feature importance, and an online calculation platform was developed. The random forest model, combining preoperative ultrasound and clinical features, accurately predicts benign and malignant gallbladder polyps, offering valuable guidance for clinical decision-making.

Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification

Rinat Prochii, Elizaveta Dakhova, Pavel Birulin, Maxim Sharaev

arxiv logopreprintJun 10 2025
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.

DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View

Donglian Li, Hui Guo, Minglang Chen, Huizhen Chen, Jialing Chen, Bocheng Liang, Pengchen Liang, Ying Tan

arxiv logopreprintJun 10 2025
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Yingınst

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at \href{https://github.com/jinggqu/NextGen-UIA}{GitHub}.

Artificial intelligence and endoanal ultrasound: pioneering automated differentiation of benign anal and sphincter lesions.

Mascarenhas M, Almeida MJ, Martins M, Mendes F, Mota J, Cardoso P, Mendes B, Ferreira J, Macedo G, Poças C

pubmed logopapersJun 10 2025
Anal injuries, such as lacerations and fissures, are challenging to diagnose because of their anatomical complexity. Endoanal ultrasound (EAUS) has proven to be a reliable tool for detailed visualization of anal structures but relies on expert interpretation. Artificial intelligence (AI) may offer a solution for more accurate and consistent diagnoses. This study aims to develop and test a convolutional neural network (CNN)-based algorithm for automatic classification of fissures and anal lacerations (internal and external) on EUAS. A single-center retrospective study analyzed 238 EUAS radial probe exams (April 2022-January 2024), categorizing 4528 frames into fissures (516), external lacerations (2174), and internal lacerations (1838), following validation by three experts. Data was split 80% for training and 20% for testing. Performance metrics included sensitivity, specificity, and accuracy. For external lacerations, the CNN achieved 82.5% sensitivity, 93.5% specificity, and 88.2% accuracy. For internal lacerations, achieved 91.7% sensitivity, 85.9% specificity, and 88.2% accuracy. For anal fissures, achieved 100% sensitivity, specificity, and accuracy. This first EUAS AI-assisted model for differentiating benign anal injuries demonstrates excellent diagnostic performance. It highlights AI's potential to improve accuracy, reduce reliance on expertise, and support broader clinical adoption. While currently limited by small dataset and single-center scope, this work represents a significant step towards integrating AI in proctology.

Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis

Jingguo Qu, Xinyang Han, Tonghuan Xiao, Jia Ai, Juan Wu, Tong Zhao, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying

arxiv logopreprintJun 10 2025
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.

Uncertainty estimation for trust attribution to speed-of-sound reconstruction with variational networks.

Laguna S, Zhang L, Bezek CD, Farkas M, Schweizer D, Kubik-Huch RA, Goksel O

pubmed logopapersJun 10 2025
Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with variational networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty-based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS 4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty-based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.

Sonopermeation combined with stroma normalization enables complete cure using nano-immunotherapy in murine breast tumors.

Neophytou C, Charalambous A, Voutouri C, Angeli S, Panagi M, Stylianopoulos T, Mpekris F

pubmed logopapersJun 10 2025
Nano-immunotherapy shows great promise in improving patient outcomes, as seen in advanced triple-negative breast cancer, but it does not cure the disease, with median survival under two years. Therefore, understanding resistance mechanisms and developing strategies to enhance its effectiveness in breast cancer is crucial. A key resistance mechanism is the pronounced desmoplasia in the tumor microenvironment, which leads to dysfunction of tumor blood vessels and thus, to hypoperfusion, limited drug delivery and hypoxia. Ultrasound sonopermeation and agents that normalize the tumor stroma have been employed separately to restore vascular abnormalities in tumors with some success. Here, we performed in vivo studies in two murine, orthotopic breast tumor models to explore if combination of ultrasound sonopermeation with a stroma normalization drug can synergistically improve tumor perfusion and enhance the efficacy of nano-immunotherapy. We found that the proposed combinatorial treatment can drastically reduce primary tumor growth and in many cases tumors were no longer measurable. Overall survival studies showed that all mice that received the combination treatment survived and rechallenge experiments revealed that the survivors obtained immunological memory. Employing ultrasound elastography and contrast enhanced ultrasound along with proteomics analysis, flow cytometry and immunofluorescene staining, we found the combinatorial treatment reduced tumor stiffness to normal levels, restoring tumor perfusion and oxygenation. Furthermore, it increased infiltration and activity of immune cells and altered the levels of immunosupportive chemokines. Finally, using machine learning analysis, we identified that tumor stiffness, CD8<sup>+</sup> T cells and M2-type macrophages were strong predictors of treatment response.

Radiomics-based machine learning atherosclerotic carotid artery disease in ultrasound: systematic review with meta-analysis of RQS.

Vacca S, Scicolone R, Pisu F, Cau R, Yang Q, Annoni A, Pontone G, Costa F, Paraskevas KI, Nicolaides A, Suri JS, Saba L

pubmed logopapersJun 9 2025
Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and machine learning (ML) have emerged as promising tools in Ultrasound (US) imaging, potentially providing a helpful tool in the screening of such lesions. Pubmed, Web of Science and Scopus databases were searched for relevant studies published from January 2005 to May 2023. The Radiomics Quality Score (RQS) was used to assess methodological quality of studies included in the review. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) assessed the risk of bias. Sensitivity, specificity, and logarithmic diagnostic odds ratio (logDOR) meta-analyses have been conducted, alongside an influence analysis. RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for two studies with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques on US had a satisfactory performance, with a sensitivity of 0.84 and specificity of 0.82. The logDOR analysis confirmed the positive results, yielding a pooled logDOR of 3.54. The summary ROC curve provided an AUC of 0.887. Radiomics combined with ML provide high sensitivity and low false positive rate for carotid plaque vulnerability assessment on US. However, current evidence is not definitive, given the low overall study quality and high inter-study heterogeneity. High quality, prospective studies are needed to confirm the potential of these promising techniques.

HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains

Shijie Wang, Yilun Zhang, Zeyu Lai, Dexing Kong

arxiv logopreprintJun 9 2025
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.
Page 10 of 26252 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.