Sort by:
Page 28 of 1061052 results

DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning

Matthew Drexler, Benjamin Risk, James J Lah, Suprateek Kundu, Deqiang Qiu

arxiv logopreprintJul 25 2025
Conventional multimodal data integration methods provide a comprehensive assessment of the shared or unique structure within each individual data type but suffer from several limitations such as the inability to handle high-dimensional data and identify nonlinear structures. In this paper, we introduce DeepJIVE, a deep-learning approach to performing Joint and Individual Variance Explained (JIVE). We perform mathematical derivation and experimental validations using both synthetic and real-world 1D, 2D, and 3D datasets. Different strategies of achieving the identity and orthogonality constraints for DeepJIVE were explored, resulting in three viable loss functions. We found that DeepJIVE can successfully uncover joint and individual variations of multimodal datasets. Our application of DeepJIVE to the Alzheimer's Disease Neuroimaging Initiative (ADNI) also identified biologically plausible covariation patterns between the amyloid positron emission tomography (PET) and magnetic resonance (MR) images. In conclusion, the proposed DeepJIVE can be a useful tool for multimodal data analysis.

Is Exchangeability better than I.I.D to handle Data Distribution Shifts while Pooling Data for Data-scarce Medical image segmentation?

Ayush Roy, Samin Enam, Jun Xia, Vishnu Suresh Lokhande, Won Hwa Kim

arxiv logopreprintJul 25 2025
Data scarcity is a major challenge in medical imaging, particularly for deep learning models. While data pooling (combining datasets from multiple sources) and data addition (adding more data from a new dataset) have been shown to enhance model performance, they are not without complications. Specifically, increasing the size of the training dataset through pooling or addition can induce distributional shifts, negatively affecting downstream model performance, a phenomenon known as the "Data Addition Dilemma". While the traditional i.i.d. assumption may not hold in multi-source contexts, assuming exchangeability across datasets provides a more practical framework for data pooling. In this work, we investigate medical image segmentation under these conditions, drawing insights from causal frameworks to propose a method for controlling foreground-background feature discrepancies across all layers of deep networks. This approach improves feature representations, which are crucial in data-addition scenarios. Our method achieves state-of-the-art segmentation performance on histopathology and ultrasound images across five datasets, including a novel ultrasound dataset that we have curated and contributed. Qualitative results demonstrate more refined and accurate segmentation maps compared to prominent baselines across three model architectures. The code will be available on Github.

T-MPEDNet: Unveiling the Synergy of Transformer-aware Multiscale Progressive Encoder-Decoder Network with Feature Recalibration for Tumor and Liver Segmentation

Chandravardhan Singh Raghaw, Jasmer Singh Sanjotra, Mohammad Zia Ur Rehman, Shubhi Bansal, Shahid Shafi Dar, Nagendra Kumar

arxiv logopreprintJul 25 2025
Precise and automated segmentation of the liver and its tumor within CT scans plays a pivotal role in swift diagnosis and the development of optimal treatment plans for individuals with liver diseases and malignancies. However, automated liver and tumor segmentation faces significant hurdles arising from the inherent heterogeneity of tumors and the diverse visual characteristics of livers across a broad spectrum of patients. Aiming to address these challenges, we present a novel Transformer-aware Multiscale Progressive Encoder-Decoder Network (T-MPEDNet) for automated segmentation of tumor and liver. T-MPEDNet leverages a deep adaptive features backbone through a progressive encoder-decoder structure, enhanced by skip connections for recalibrating channel-wise features while preserving spatial integrity. A Transformer-inspired dynamic attention mechanism captures long-range contextual relationships within the spatial domain, further enhanced by multi-scale feature utilization for refined local details, leading to accurate prediction. Morphological boundary refinement is then employed to address indistinct boundaries with neighboring organs, capturing finer details and yielding precise boundary labels. The efficacy of T-MPEDNet is comprehensively assessed on two widely utilized public benchmark datasets, LiTS and 3DIRCADb. Extensive quantitative and qualitative analyses demonstrate the superiority of T-MPEDNet compared to twelve state-of-the-art methods. On LiTS, T-MPEDNet achieves outstanding Dice Similarity Coefficients (DSC) of 97.6% and 89.1% for liver and tumor segmentation, respectively. Similar performance is observed on 3DIRCADb, with DSCs of 98.3% and 83.3% for liver and tumor segmentation, respectively. Our findings prove that T-MPEDNet is an efficacious and reliable framework for automated segmentation of the liver and its tumor in CT scans.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection

Nicolas Pinon, Carole Lartizien

arxiv logopreprintJul 25 2025
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning

Semantics versus Identity: A Divide-and-Conquer Approach towards Adjustable Medical Image De-Identification

Yuan Tian, Shuo Wang, Rongzhao Zhang, Zijian Chen, Yankai Jiang, Chunyi Li, Xiangyang Zhu, Fang Yan, Qiang Hu, XiaoSong Wang, Guangtao Zhai

arxiv logopreprintJul 25 2025
Medical imaging has significantly advanced computer-aided diagnosis, yet its re-identification (ReID) risks raise critical privacy concerns, calling for de-identification (DeID) techniques. Unfortunately, existing DeID methods neither particularly preserve medical semantics, nor are flexibly adjustable towards different privacy levels. To address these issues, we propose a divide-and-conquer framework comprising two steps: (1) Identity-Blocking, which blocks varying proportions of identity-related regions, to achieve different privacy levels; and (2) Medical-Semantics-Compensation, which leverages pre-trained Medical Foundation Models (MFMs) to extract medical semantic features to compensate the blocked regions. Moreover, recognizing that features from MFMs may still contain residual identity information, we introduce a Minimum Description Length principle-based feature decoupling strategy, to effectively decouple and discard such identity components. Extensive evaluations against existing approaches across seven datasets and three downstream tasks, demonstrates our state-of-the-art performance.

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

Elucidating the Design Space of Arbitrary-Noise-Based Diffusion Models

Xingyu Qiu, Mengying Yang, Xinghua Ma, Dong Liang, Yuzhen Li, Fanding Li, Gongning Luo, Wei Wang, Kuanquan Wang, Shuo Li

arxiv logopreprintJul 24 2025
EDM elucidates the unified design space of diffusion models, yet its fixed noise patterns restricted to pure Gaussian noise, limit advancements in image restoration. Our study indicates that forcibly injecting Gaussian noise corrupts the degraded images, overextends the image transformation distance, and increases restoration complexity. To address this problem, our proposed EDA Elucidates the Design space of Arbitrary-noise-based diffusion models. Theoretically, EDA expands the freedom of noise pattern while preserving the original module flexibility of EDM, with rigorous proof that increased noise complexity incurs no additional computational overhead during restoration. EDA is validated on three typical tasks: MRI bias field correction (global smooth noise), CT metal artifact reduction (global sharp noise), and natural image shadow removal (local boundary-aware noise). With only 5 sampling steps, EDA outperforms most task-specific methods and achieves state-of-the-art performance in bias field correction and shadow removal.

UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model

Yilong Hu, Shijie Chang, Lihe Zhang, Feng Tian, Weibing Sun, Huchuan Lu

arxiv logopreprintJul 24 2025
The Diffusion Probabilistic Model (DPM) has demonstrated remarkable performance across a variety of generative tasks. The inherent randomness in diffusion models helps address issues such as blurring at the edges of medical images and labels, positioning Diffusion Probabilistic Models (DPMs) as a promising approach for lesion segmentation. However, we find that the current training and inference strategies of diffusion models result in an uneven distribution of attention across different timesteps, leading to longer training times and suboptimal solutions. To this end, we propose UniSegDiff, a novel diffusion model framework designed to address lesion segmentation in a unified manner across multiple modalities and organs. This framework introduces a staged training and inference approach, dynamically adjusting the prediction targets at different stages, forcing the model to maintain high attention across all timesteps, and achieves unified lesion segmentation through pre-training the feature extraction network for segmentation. We evaluate performance on six different organs across various imaging modalities. Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches. The code is available at https://github.com/HUYILONG-Z/UniSegDiff.

Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection

Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu

arxiv logopreprintJul 24 2025
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.
Page 28 of 1061052 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.