Sort by:
Page 2 of 765 results

ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation

Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai

arxiv logopreprintMay 30 2025
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.

DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification

Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky

arxiv logopreprintMay 29 2025
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL

Interpreting Chest X-rays Like a Radiologist: A Benchmark with Clinical Reasoning

Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie

arxiv logopreprintMay 29 2025
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).

Deep Modeling and Optimization of Medical Image Classification

Yihang Wu, Muhammad Owais, Reem Kateb, Ahmad Chaddad

arxiv logopreprintMay 29 2025
Deep models, such as convolutional neural networks (CNNs) and vision transformer (ViT), demonstrate remarkable performance in image classification. However, those deep models require large data to fine-tune, which is impractical in the medical domain due to the data privacy issue. Furthermore, despite the feasible performance of contrastive language image pre-training (CLIP) in the natural domain, the potential of CLIP has not been fully investigated in the medical field. To face these challenges, we considered three scenarios: 1) we introduce a novel CLIP variant using four CNNs and eight ViTs as image encoders for the classification of brain cancer and skin cancer, 2) we combine 12 deep models with two federated learning techniques to protect data privacy, and 3) we involve traditional machine learning (ML) methods to improve the generalization ability of those deep models in unseen domain data. The experimental results indicate that maxvit shows the highest averaged (AVG) test metrics (AVG = 87.03\%) in HAM10000 dataset with multimodal learning, while convnext\_l demonstrates remarkable test with an F1-score of 83.98\% compared to swin\_b with 81.33\% in FL model. Furthermore, the use of support vector machine (SVM) can improve the overall test metrics with AVG of $\sim 2\%$ for swin transformer series in ISIC2018. Our codes are available at https://github.com/AIPMLab/SkinCancerSimulation.

ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer

Moinak Bhattacharya, Judy Huang, Amna F. Sher, Gagandeep Singh, Chao Chen, Prateek Prasanna

arxiv logopreprintMay 29 2025
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

MedBridge: Bridging Foundation Vision-Language Models to Medical Image Diagnosis

Yitong Li, Morteza Ghahremani, Christian Wachinger

arxiv logopreprintMay 27 2025
Recent vision-language foundation models deliver state-of-the-art results on natural image classification but falter on medical images due to pronounced domain shifts. At the same time, training a medical foundation model requires substantial resources, including extensive annotated data and high computational capacity. To bridge this gap with minimal overhead, we introduce MedBridge, a lightweight multimodal adaptation framework that re-purposes pretrained VLMs for accurate medical image diagnosis. MedBridge comprises three key components. First, a Focal Sampling module that extracts high-resolution local regions to capture subtle pathological features and compensate for the limited input resolution of general-purpose VLMs. Second, a Query Encoder (QEncoder) injects a small set of learnable queries that attend to the frozen feature maps of VLM, aligning them with medical semantics without retraining the entire backbone. Third, a Mixture of Experts mechanism, driven by learnable queries, harnesses the complementary strength of diverse VLMs to maximize diagnostic performance. We evaluate MedBridge on five medical imaging benchmarks across three key adaptation tasks, demonstrating its superior performance in both cross-domain and in-domain adaptation settings, even under varying levels of training data availability. Notably, MedBridge achieved over 6-15% improvement in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis, underscoring its effectiveness in leveraging foundation models for accurate and data-efficient medical diagnosis. Our code is available at https://github.com/ai-med/MedBridge.

STA-Risk: A Deep Dive of Spatio-Temporal Asymmetries for Breast Cancer Risk Prediction

Zhengbo Zhou, Dooman Arefan, Margarita Zuley, Jules Sumkin, Shandong Wu

arxiv logopreprintMay 27 2025
Predicting the risk of developing breast cancer is an important clinical tool to guide early intervention and tailoring personalized screening strategies. Early risk models have limited performance and recently machine learning-based analysis of mammogram images showed encouraging risk prediction effects. These models however are limited to the use of a single exam or tend to overlook nuanced breast tissue evolvement in spatial and temporal details of longitudinal imaging exams that are indicative of breast cancer risk. In this paper, we propose STA-Risk (Spatial and Temporal Asymmetry-based Risk Prediction), a novel Transformer-based model that captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction. STA-Risk is innovative by the side encoding and temporal encoding to learn spatial-temporal asymmetries, regulated by a customized asymmetry loss. We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction. Source codes will be released upon publishing of the paper.

Advancements in Medical Image Classification through Fine-Tuning Natural Domain Foundation Models

Mobina Mansoori, Sajjad Shahabodini, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi

arxiv logopreprintMay 26 2025
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.
Page 2 of 765 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.