Sort by:
Page 18 of 55546 results

Risk Estimation of Knee Osteoarthritis Progression via Predictive Multi-task Modelling from Efficient Diffusion Model using X-ray Images

David Butler, Adrian Hilton, Gustavo Carneiro

arxiv logopreprintJun 17 2025
Medical imaging plays a crucial role in assessing knee osteoarthritis (OA) risk by enabling early detection and disease monitoring. Recent machine learning methods have improved risk estimation (i.e., predicting the likelihood of disease progression) and predictive modelling (i.e., the forecasting of future outcomes based on current data) using medical images, but clinical adoption remains limited due to their lack of interpretability. Existing approaches that generate future images for risk estimation are complex and impractical. Additionally, previous methods fail to localize anatomical knee landmarks, limiting interpretability. We address these gaps with a new interpretable machine learning method to estimate the risk of knee OA progression via multi-task predictive modelling that classifies future knee OA severity and predicts anatomical knee landmarks from efficiently generated high-quality future images. Such image generation is achieved by leveraging a diffusion model in a class-conditioned latent space to forecast disease progression, offering a visual representation of how particular health conditions may evolve. Applied to the Osteoarthritis Initiative dataset, our approach improves the state-of-the-art (SOTA) by 2\%, achieving an AUC of 0.71 in predicting knee OA progression while offering ~9% faster inference time.

DGG-XNet: A Hybrid Deep Learning Framework for Multi-Class Brain Disease Classification with Explainable AI

Sumshun Nahar Eity, Mahin Montasir Afif, Tanisha Fairooz, Md. Mortuza Ahmmed, Md Saef Ullah Miah

arxiv logopreprintJun 17 2025
Accurate diagnosis of brain disorders such as Alzheimer's disease and brain tumors remains a critical challenge in medical imaging. Conventional methods based on manual MRI analysis are often inefficient and error-prone. To address this, we propose DGG-XNet, a hybrid deep learning model integrating VGG16 and DenseNet121 to enhance feature extraction and classification. DenseNet121 promotes feature reuse and efficient gradient flow through dense connectivity, while VGG16 contributes strong hierarchical spatial representations. Their fusion enables robust multiclass classification of neurological conditions. Grad-CAM is applied to visualize salient regions, enhancing model transparency. Trained on a combined dataset from BraTS 2021 and Kaggle, DGG-XNet achieved a test accuracy of 91.33\%, with precision, recall, and F1-score all exceeding 91\%. These results highlight DGG-XNet's potential as an effective and interpretable tool for computer-aided diagnosis (CAD) of neurodegenerative and oncological brain disorders.

NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification

Wajih Hassan Raza, Aamir Bader Shah, Yu Wen, Yidan Shen, Juan Diego Martinez Lemus, Mya Caryn Schiess, Timothy Michael Ellmore, Renjie Hu, Xin Fu

arxiv logopreprintJun 17 2025
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.

Frequency-Calibrated Membership Inference Attacks on Medical Image Diffusion Models

Xinkai Zhao, Yuta Tokuoka, Junichiro Iwasawa, Keita Oda

arxiv logopreprintJun 17 2025
The increasing use of diffusion models for image generation, especially in sensitive areas like medical imaging, has raised significant privacy concerns. Membership Inference Attack (MIA) has emerged as a potential approach to determine if a specific image was used to train a diffusion model, thus quantifying privacy risks. Existing MIA methods often rely on diffusion reconstruction errors, where member images are expected to have lower reconstruction errors than non-member images. However, applying these methods directly to medical images faces challenges. Reconstruction error is influenced by inherent image difficulty, and diffusion models struggle with high-frequency detail reconstruction. To address these issues, we propose a Frequency-Calibrated Reconstruction Error (FCRE) method for MIAs on medical image diffusion models. By focusing on reconstruction errors within a specific mid-frequency range and excluding both high-frequency (difficult to reconstruct) and low-frequency (less informative) regions, our frequency-selective approach mitigates the confounding factor of inherent image difficulty. Specifically, we analyze the reverse diffusion process, obtain the mid-frequency reconstruction error, and compute the structural similarity index score between the reconstructed and original images. Membership is determined by comparing this score to a threshold. Experiments on several medical image datasets demonstrate that our FCRE method outperforms existing MIA methods.

Pixel-wise Modulated Dice Loss for Medical Image Segmentation

Seyed Mohsen Hosseini

arxiv logopreprintJun 17 2025
Class imbalance and the difficulty imbalance are the two types of data imbalance that affect the performance of neural networks in medical segmentation tasks. In class imbalance the loss is dominated by the majority classes and in difficulty imbalance the loss is dominated by easy to classify pixels. This leads to an ineffective training. Dice loss, which is based on a geometrical metric, is very effective in addressing the class imbalance compared to the cross entropy (CE) loss, which is adopted directly from classification tasks. To address the difficulty imbalance, the common approach is employing a re-weighted CE loss or a modified Dice loss to focus the training on difficult to classify areas. The existing modification methods are computationally costly and with limited success. In this study we propose a simple modification to the Dice loss with minimal computational cost. With a pixel level modulating term, we take advantage of the effectiveness of Dice loss in handling the class imbalance to also handle the difficulty imbalance. Results on three commonly used medical segmentation tasks show that the proposed Pixel-wise Modulated Dice loss (PM Dice loss) outperforms other methods, which are designed to tackle the difficulty imbalance problem.

SCISSOR: Mitigating Semantic Bias through Cluster-Aware Siamese Networks for Robust Classification

Shuo Yang, Bardh Prenkaj, Gjergji Kasneci

arxiv logopreprintJun 17 2025
Shortcut learning undermines model generalization to out-of-distribution data. While the literature attributes shortcuts to biases in superficial features, we show that imbalances in the semantic distribution of sample embeddings induce spurious semantic correlations, compromising model robustness. To address this issue, we propose SCISSOR (Semantic Cluster Intervention for Suppressing ShORtcut), a Siamese network-based debiasing approach that remaps the semantic space by discouraging latent clusters exploited as shortcuts. Unlike prior data-debiasing approaches, SCISSOR eliminates the need for data augmentation and rewriting. We evaluate SCISSOR on 6 models across 4 benchmarks: Chest-XRay and Not-MNIST in computer vision, and GYAFC and Yelp in NLP tasks. Compared to several baselines, SCISSOR reports +5.3 absolute points in F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-XRay, and +1 on Not-MNIST. SCISSOR is also highly advantageous for lightweight models with ~9.5% improvement on F1 for ViT on computer vision datasets and ~11.9% for BERT on NLP. Our study redefines the landscape of model generalization by addressing overlooked semantic biases, establishing SCISSOR as a foundational framework for mitigating shortcut learning and fostering more robust, bias-resistant AI systems.

Step-by-Step Approach to Design Image Classifiers in AI: An Exemplary Application of the CNN Architecture for Breast Cancer Diagnosis

Lohani, A., Mishra, B. K., Wertheim, K. Y., Fagbola, T. M.

medrxiv logopreprintJun 17 2025
In recent years, different Convolutional Neural Networks (CNNs) approaches have been applied for image classification in general and specific problems such as breast cancer diagnosis, but there is no standardising approach to facilitate comparison and synergy. This paper attempts a step-by-step approach to standardise a common application of image classification with the specific problem of classifying breast ultrasound images for breast cancer diagnosis as an illustrative example. In this study, three distinct datasets: Breast Ultrasound Image (BUSI), Breast Ultrasound Image (BUI), and Ultrasound Breast Images for Breast Cancer (UBIBC) datasets have been used to build and fine-tune custom and pre-trained CNN models systematically. Custom CNN models have been built, and hence, transfer learning (TL) has been applied to deploy a broad range of pre-trained models, optimised by applying data augmentation techniques and hyperparameter tuning. Models were trained and tested in scenarios involving limited and large datasets to gain insights into their robustness and generality. The obtained results indicated that the custom CNN and VGG19 are the two most suitable architectures for this problem. The experimental results highlight the significance of employing an effective step-by-step approach in image classification tasks to enhance the robustness and generalisation capabilities of CNN-based classifiers.

Radiologist-AI workflow can be modified to reduce the risk of medical malpractice claims

Bernstein, M., Sheppard, B., Bruno, M. A., Lay, P. S., Baird, G. L.

medrxiv logopreprintJun 16 2025
BackgroundArtificial Intelligence (AI) is rapidly changing the legal landscape of radiology. Results from a previous experiment suggested that providing AI error rates can reduce perceived radiologist culpability, as judged by mock jury members (4). The current study advances this work by examining whether the radiologists behavior also impacts perceptions of liability. Methods. Participants (n=282) read about a hypothetical malpractice case where a 50-year-old who visited the Emergency Department with acute neurological symptoms received a brain CT scan to determine if bleeding was present. An AI system was used by the radiologist who interpreted imaging. The AI system correctly flagged the case as abnormal. Nonetheless, the radiologist concluded no evidence of bleeding, and the blood-thinner t-PA was administered. Participants were randomly assigned to either a 1.) single-read condition, where the radiologist interpreted the CT once after seeing AI feedback, or 2.) a double-read condition, where the radiologist interpreted the CT twice, first without AI and then with AI feedback. Participants were then told the patient suffered irreversible brain damage due to the missed brain bleed, resulting in the patient (plaintiff) suing the radiologist (defendant). Participants indicated whether the radiologist met their duty of care to the patient (yes/no). Results. Hypothetical jurors were more likely to side with the plaintiff in the single-read condition (106/142, 74.7%) than in the double-read condition (74/140, 52.9%), p=0.0002. Conclusion. This suggests that the penalty for disagreeing with correct AI can be mitigated when images are interpreted twice, or at least if a radiologist gives an interpretation before AI is used.

PRO: Projection Domain Synthesis for CT Imaging

Kang Chen, Bin Huang, Xuebin Yang, Junyan Zhang, Qiegen Liu

arxiv logopreprintJun 16 2025
Synthesizing high quality CT images remains a signifi-cant challenge due to the limited availability of annotat-ed data and the complex nature of CT imaging. In this work, we present PRO, a novel framework that, to the best of our knowledge, is the first to perform CT image synthesis in the projection domain using latent diffusion models. Unlike previous approaches that operate in the image domain, PRO learns rich structural representa-tions from raw projection data and leverages anatomi-cal text prompts for controllable synthesis. This projec-tion domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capa-ble of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves perfor-mance across multiple downstream tasks, including low-dose and sparse-view reconstruction, even with limited training data. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.

ViT-NeBLa: A Hybrid Vision Transformer and Neural Beer-Lambert Framework for Single-View 3D Reconstruction of Oral Anatomy from Panoramic Radiographs

Bikram Keshari Parida, Anusree P. Sunilkumar, Abhijit Sen, Wonsang You

arxiv logopreprintJun 16 2025
Dental diagnosis relies on two primary imaging modalities: panoramic radiographs (PX) providing 2D oral cavity representations, and Cone-Beam Computed Tomography (CBCT) offering detailed 3D anatomical information. While PX images are cost-effective and accessible, their lack of depth information limits diagnostic accuracy. CBCT addresses this but presents drawbacks including higher costs, increased radiation exposure, and limited accessibility. Existing reconstruction models further complicate the process by requiring CBCT flattening or prior dental arch information, often unavailable clinically. We introduce ViT-NeBLa, a vision transformer-based Neural Beer-Lambert model enabling accurate 3D reconstruction directly from single PX. Our key innovations include: (1) enhancing the NeBLa framework with Vision Transformers for improved reconstruction capabilities without requiring CBCT flattening or prior dental arch information, (2) implementing a novel horseshoe-shaped point sampling strategy with non-intersecting rays that eliminates intermediate density aggregation required by existing models due to intersecting rays, reducing sampling point computations by $52 \%$, (3) replacing CNN-based U-Net with a hybrid ViT-CNN architecture for superior global and local feature extraction, and (4) implementing learnable hash positional encoding for better higher-dimensional representation of 3D sample points compared to existing Fourier-based dense positional encoding. Experiments demonstrate that ViT-NeBLa significantly outperforms prior state-of-the-art methods both quantitatively and qualitatively, offering a cost-effective, radiation-efficient alternative for enhanced dental diagnostics.
Page 18 of 55546 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.