Sort by:
Page 341 of 3863853 results

Integrating multi-omics data with artificial intelligence to decipher the role of tumor-infiltrating lymphocytes in tumor immunotherapy.

Xie T, Xue H, Huang A, Yan H, Yuan J

pubmed logopapersMay 23 2025
Tumor-infiltrating lymphocytes (TILs) are capable of recognizing tumor antigens, impacting tumor prognosis, predicting the efficacy of neoadjuvant therapies, contributing to the development of new cell-based immunotherapies, studying the tumor immune microenvironment, and identifying novel biomarkers. Traditional methods for evaluating TILs primarily rely on histopathological examination using standard hematoxylin and eosin staining or immunohistochemical staining, with manual cell counting under a microscope. These methods are time-consuming and subject to significant observer variability and error. Recently, artificial intelligence (AI) has rapidly advanced in the field of medical imaging, particularly with deep learning algorithms based on convolutional neural networks. AI has shown promise as a powerful tool for the quantitative evaluation of tumor biomarkers. The advent of AI offers new opportunities for the automated and standardized assessment of TILs. This review provides an overview of the advancements in the application of AI for assessing TILs from multiple perspectives. It specifically focuses on AI-driven approaches for identifying TILs in tumor tissue images, automating TILs quantification, recognizing TILs subpopulations, and analyzing the spatial distribution patterns of TILs. The review aims to elucidate the prognostic value of TILs in various cancers, as well as their predictive capacity for responses to immunotherapy and neoadjuvant therapy. Furthermore, the review explores the integration of AI with other emerging technologies, such as single-cell sequencing, multiplex immunofluorescence, spatial transcriptomics, and multimodal approaches, to enhance the comprehensive study of TILs and further elucidate their clinical utility in tumor treatment and prognosis.

PDS-UKAN: Subdivision hopping connected to the U-KAN network for medical image segmentation.

Deng L, Wang W, Chen S, Yang X, Huang S, Wang J

pubmed logopapersMay 23 2025
Accurate and efficient segmentation of medical images plays a vital role in clinical tasks, such as diagnostic procedures and planning treatments. Traditional U-shaped encoder-decoder architectures, built on convolutional and transformer-based networks, have shown strong performance in medical image processing. However, the simple skip connections commonly used in these networks face limitations, such as insufficient nonlinear modeling capacity, weak global multiscale context modeling, and limited interpretability. To address these challenges, this study proposes the PDS-UKAN network, an innovative subdivision-based U-KAN architecture, designed to improve segmentation accuracy. The PDS-UKAN incorporates a PKAN module-comprising partial convolutions and Kolmogorov - Arnold network layers-into the encoder bottleneck, enhancing the network's nonlinear modeling and interpretability. Additionally, the proposed Dual-Branch Convolutional Boundary Enhancement Module (DBE) focuses on pixel-level boundary refinement, improving edge detail preservation in shallow skip connections. Meanwhile, the Skip Connection Channel Spatial Attention Module (SCCSA) mechanism is applied in the deeper skip connections to strengthen cross-dimensional interactions between channels and spatial features, mitigating the loss of spatial information due to downsampling. Extensive experiments across multiple medical imaging datasets demonstrate that PDS-UKAN consistently achieves superior performance compared to state-of-the-art (SOTA) methods.

Brain age prediction from MRI scans in neurodegenerative diseases.

Papouli A, Cole JH

pubmed logopapersMay 22 2025
This review explores the use of brain age estimation from MRI scans as a biomarker of brain health. With disorders like Alzheimer's and Parkinson's increasing globally, there is an urgent need for early detection tools that can identify at-risk individuals before cognitive symptoms emerge. Brain age offers a noninvasive, quantitative measure of neurobiological ageing, with applications in early diagnosis, disease monitoring, and personalized medicine. Studies show that individuals with Alzheimer's, mild cognitive impairment (MCI), and Parkinson's have older brain ages than their chronological age. Longitudinal research indicates that brain-predicted age difference (brain-PAD) rises with disease progression and often precedes cognitive decline. Advances in deep learning and multimodal imaging have improved the accuracy and interpretability of brain age predictions. Moreover, socioeconomic disparities and environmental factors significantly affect brain aging, highlighting the need for inclusive models. Brain age estimation is a promising biomarker for identify future risk of neurodegenerative disease, monitoring progression, and helping prognosis. Challenges like implementation of standardization, demographic biases, and interpretability remain. Future research should integrate brain age with biomarkers and multimodal imaging to enhance early diagnosis and intervention strategies.

Patient Reactions to Artificial Intelligence-Clinician Discrepancies: Web-Based Randomized Experiment.

Madanay F, O'Donohue LS, Zikmund-Fisher BJ

pubmed logopapersMay 22 2025
As the US Food and Drug Administration (FDA)-approved use of artificial intelligence (AI) for medical imaging rises, radiologists are increasingly integrating AI into their clinical practices. In lung cancer screening, diagnostic AI offers a second set of eyes with the potential to detect cancer earlier than human radiologists. Despite AI's promise, a potential problem with its integration is the erosion of patient confidence in clinician expertise when there is a discrepancy between the radiologist's and the AI's interpretation of the imaging findings. We examined how discrepancies between AI-derived recommendations and radiologists' recommendations affect patients' agreement with radiologists' recommendations and satisfaction with their radiologists. We also analyzed how patients' medical maximizing-minimizing preferences moderate these relationships. We conducted a randomized, between-subjects experiment with 1606 US adult participants. Assuming the role of patients, participants imagined undergoing a low-dose computerized tomography scan for lung cancer screening and receiving results and recommendations from (1) a radiologist only, (2) AI and a radiologist in agreement, (3) a radiologist who recommended more testing than AI (ie, radiologist overcalled AI), or (4) a radiologist who recommended less testing than AI (ie, radiologist undercalled AI). Participants rated the radiologist on three criteria: agreement with the radiologist's recommendation, how likely they would be to recommend the radiologist to family and friends, and how good of a provider they perceived the radiologist to be. We measured medical maximizing-minimizing preferences and categorized participants as maximizers (ie, those who seek aggressive intervention), minimizers (ie, those who prefer no or passive intervention), and neutrals (ie, those in the middle). Participants' agreement with the radiologist's recommendation was significantly lower when the radiologist undercalled AI (mean 4.01, SE 0.07, P<.001) than in the other 3 conditions, with no significant differences among them (radiologist overcalled AI [mean 4.63, SE 0.06], agreed with AI [mean 4.55, SE 0.07], or had no AI [mean 4.57, SE 0.06]). Similarly, participants were least likely to recommend (P<.001) and positively rate (P<.001) the radiologist who undercalled AI, with no significant differences among the other conditions. Maximizers agreed with the radiologist who overcalled AI (β=0.82, SE 0.14; P<.001) and disagreed with the radiologist who undercalled AI (β=-0.47, SE 0.14; P=.001). However, whereas minimizers disagreed with the radiologist who overcalled AI (β=-0.43, SE 0.18, P=.02), they did not significantly agree with the radiologist who undercalled AI (β=0.14, SE 0.17, P=.41). Radiologists who recommend less testing than AI may face decreased patient confidence in their expertise, but they may not face this same penalty for giving more aggressive recommendations than AI. Patients' reactions may depend in part on whether their general preferences to maximize or minimize align with the radiologists' recommendations. Future research should test communication strategies for radiologists' disclosure of AI discrepancies to patients.

A Novel Dynamic Neural Network for Heterogeneity-Aware Structural Brain Network Exploration and Alzheimer's Disease Diagnosis.

Cui W, Leng Y, Peng Y, Bai C, Li L, Jiang X, Yuan G, Zheng J

pubmed logopapersMay 22 2025
Heterogeneity is a fundamental characteristic of brain diseases, distinguished by variability not only in brain atrophy but also in the complexity of neural connectivity and brain networks. However, existing data-driven methods fail to provide a comprehensive analysis of brain heterogeneity. Recently, dynamic neural networks (DNNs) have shown significant advantages in capturing sample-wise heterogeneity. Therefore, in this article, we first propose a novel dynamic heterogeneity-aware network (DHANet) to identify critical heterogeneous brain regions, explore heterogeneous connectivity between them, and construct a heterogeneous-aware structural brain network (HGA-SBN) using structural magnetic resonance imaging (sMRI). Specifically, we develop a 3-D dynamic convmixer to extract abundant heterogeneous features from sMRI first. Subsequently, the critical brain atrophy regions are identified by dynamic prototype learning with embedding the hierarchical brain semantic structure. Finally, we employ a joint dynamic edge-correlation (JDE) modeling approach to construct the heterogeneous connectivity between these regions and analyze the HGA-SBN. To evaluate the effectiveness of the DHANet, we conduct elaborate experiments on three public datasets and the method achieves state-of-the-art (SOTA) performance on two classification tasks.

Cross-Scale Texture Supplementation for Reference-based Medical Image Super-Resolution.

Li Y, Hao W, Zeng H, Wang L, Xu J, Routray S, Jhaveri RH, Gadekallu TR

pubmed logopapersMay 22 2025
Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its resolution is often limited by acquisition time constraints, potentially compromising diagnostic accuracy. Reference-based Image Super-Resolution (RefSR) has shown promising performance in addressing such challenges by leveraging external high-resolution (HR) reference images to enhance the quality of low-resolution (LR) images. The core objective of RefSR is to accurately establish correspondences between the reference HR image and the LR images. In pursuit of this objective, this paper develops a Self-rectified Texture Supplementation network for RefSR (STS-SR) to enhance fine details in MRI images and support the expanding role of autonomous AI in healthcare. Our network comprises a texture-specified selfrectified feature transfer module and a cross-scale texture complementary network. The feature transfer module employs highfrequency filtering to facilitate the network concentrating on fine details. To better exploit the information from both the reference and LR images, our cross-scale texture complementary module incorporates the All-ViT and Swin Transformer layers to achieve feature aggregation at multiple scales, which enables high-quality image enhancement that is critical for autonomous AI systems in healthcare to make accurate decisions. Extensive experiments are performed across various benchmark datasets. The results validate the effectiveness of our method and demonstrate that the method produces state-of-the-art performance as compared to existing approaches. This advancement enables autonomous AI systems to utilize high-quality MRI images for more accurate diagnostics and reliable predictions.

HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading.

Zhang Q, Chuang C, Zhang S, Zhao Z, Wang K, Xu J, Sun J

pubmed logopapersMay 22 2025
Osteoporotic vertebral compression fractures (OVCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, the absence of pre-fracture CT scans and standardized vertebral references leads to measurement errors and inter-observer variability, while irregular compression patterns further challenge the precise grading of fracture severity. While deep learning methods have shown promise in aiding OVCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-OVCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and in-house dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic accuracy in clinical settings and assisting in surgical decision-making.

Influence of content-based image retrieval on the accuracy and inter-reader agreement of usual interstitial pneumonia CT pattern classification.

Park S, Hwang HJ, Yun J, Chae EJ, Choe J, Lee SM, Lee HN, Shin SY, Park H, Jeong H, Kim MJ, Lee JH, Jo KW, Baek S, Seo JB

pubmed logopapersMay 22 2025
To investigate whether a content-based image retrieval (CBIR) of similar chest CT images can help usual interstitial pneumonia (UIP) CT pattern classifications among readers with varying levels of experience. This retrospective study included patients who underwent high-resolution chest CT between 2013 and 2015 for the initial workup for fibrosing interstitial lung disease. UIP classifications were assigned to CT images by three thoracic radiologists, which served as the ground truth. One hundred patients were selected as queries. The CBIR retrieved the top three similar CT images with UIP classifications using a deep learning algorithm. The diagnostic accuracies and inter-reader agreement of nine readers before and after CBIR were evaluated. Of 587 patients (mean age, 63 years; 356 men), 100 query cases (26 UIP patterns, 26 probable UIP patterns, 5 indeterminate for UIP, and 43 alternative diagnoses) were selected. After CBIR, the mean accuracy (61.3% to 67.1%; p = 0.011) and inter-reader agreement (Fleiss Kappa, 0.400 to 0.476; p = 0.003) were slightly improved. The accuracies of the radiologist group for all CT patterns except indeterminate for UIP increased after CBIR; however, they did not reach statistical significance. The resident and pulmonologist groups demonstrated mixed results: accuracy decreased for UIP pattern, increased for alternative diagnosis, and varied for others. CBIR slightly improved diagnostic accuracy and inter-reader agreement in UIP pattern classifications. However, its impact varied depending on the readers' level of experience, suggesting that the current CBIR system may be beneficial when used to complement the interpretations of experienced readers. Question CT pattern classification is important for the standardized assessment and management of idiopathic pulmonary fibrosis, but requires radiologic expertise and shows inter-reader variability. Findings CBIR slightly improved diagnostic accuracy and inter-reader agreement for UIP CT pattern classifications overall. Clinical relevance The proposed CBIR system may guide consistent work-up and treatment strategies by enhancing accuracy and inter-reader agreement in UIP CT pattern classifications by experienced readers whose expertise and experience can effectively interact with CBIR results.

High-resolution deep learning reconstruction to improve the accuracy of CT fractional flow reserve.

Tomizawa N, Fan R, Fujimoto S, Nozaki YO, Kawaguchi YO, Takamura K, Hiki M, Aikawa T, Takahashi N, Okai I, Okazaki S, Kumamaru KK, Minamino T, Aoki S

pubmed logopapersMay 22 2025
This study aimed to compare the diagnostic performance of CT-derived fractional flow reserve (CT-FFR) using model-based iterative reconstruction (MBIR) and high-resolution deep learning reconstruction (HR-DLR) images to detect functionally significant stenosis with invasive FFR as the reference standard. This single-center retrospective study included 79 consecutive patients (mean age, 70 ± 11 [SD] years; 57 male) who underwent coronary CT angiography followed by invasive FFR between February 2022 and March 2024. CT-FFR was calculated using a mesh-free simulation. The cutoff for functionally significant stenosis was defined as FFR ≤ 0.80. CT-FFR was compared with MBIR and HR-DLR using receiver operating characteristic curve analysis. The mean invasive FFR value was 0.81 ± 0.09, and 46 of 98 vessels (47%) had FFR ≤ 0.80. The mean noise of HR-DLR was lower than that of MBIR (14.4 ± 1.7 vs 23.5 ± 3.1, p < 0.001). The area under the receiver operating characteristic curve for the diagnosis of functionally significant stenosis of HR-DLR (0.88; 95% CI: 0.80, 0.95) was higher than that of MBIR (0.76; 95% CI: 0.67, 0.86; p = 0.003). The diagnostic accuracy of HR-DLR (88%; 86 of 98 vessels; 95% CI: 80, 94) was higher than that of MBIR (70%; 69 of 98 vessels; 95% CI: 60, 79; p < 0.001). HR-DLR improves image quality and the diagnostic performance of CT-FFR for the diagnosis of functionally significant stenosis. Question The effect of HR-DLR on the diagnostic performance of CT-FFR has not been investigated. Findings HR-DLR improved the diagnostic performance of CT-FFR over MBIR for the diagnosis of functionally significant stenosis as assessed by invasive FFR. Clinical relevance HR-DLR would further enhance the clinical utility of CT-FFR in diagnosing the functional significance of coronary stenosis.

ESR Essentials: a step-by-step guide of segmentation for radiologists-practice recommendations by the European Society of Medical Imaging Informatics.

Chupetlovska K, Akinci D'Antonoli T, Bodalal Z, Abdelatty MA, Erenstein H, Santinha J, Huisman M, Visser JJ, Trebeschi S, Groot Lipman KBW

pubmed logopapersMay 22 2025
High-quality segmentation is important for AI-driven radiological research and clinical practice, with the potential to play an even more prominent role in the future. As medical imaging advances, accurately segmenting anatomical and pathological structures is increasingly used to obtain quantitative data and valuable insights. Segmentation and volumetric analysis could enable more precise diagnosis, treatment planning, and patient monitoring. These guidelines aim to improve segmentation accuracy and consistency, allowing for better decision-making in both research and clinical environments. Practical advice on planning and organization is provided, focusing on quality, precision, and communication among clinical teams. Additionally, tips and strategies for improving segmentation practices in radiology and radiation oncology are discussed, as are potential pitfalls to avoid. KEY POINTS: As AI continues to advance, volumetry will become more integrated into clinical practice, making it essential for radiologists to stay informed about its applications in diagnosis and treatment planning. There is a significant lack of practical guidelines and resources tailored specifically for radiologists on technical topics like segmentation and volumetric analysis. Establishing clear rules and best practices for segmentation can streamline volumetric assessment in clinical settings, making it easier to manage and leading to more accurate decision-making for patient care.
Page 341 of 3863853 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.