Sort by:
Page 186 of 1861854 results

Radiology Reading Room for the Future: Harnessing the Power of Large Language Models Like ChatGPT.

Tippareddy C, Jiang S, Bera K, Ramaiya N

pubmed logopapersJan 1 2025
Radiology has usually been the field of medicine that has been at the forefront of technological advances, often being the first to wholeheartedly embrace them. Whether it's from digitization to cloud side architecture, radiology has led the way for adopting the latest advances. With the advent of large language models (LLMs), especially with the unprecedented explosion of freely available ChatGPT, time is ripe for radiology and radiologists to find novel ways to use the technology to improve their workflow. Towards this, we believe these LLMs have a key role in the radiology reading room not only to expedite processes, simplify mundane and archaic tasks, but also to increase the radiologist's and radiologist trainee's knowledge base at a far faster pace. In this article, we discuss some of the ways we believe ChatGPT, and the likes can be harnessed in the reading room.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

Integrating AI into Clinical Workflows: A Simulation Study on Implementing AI-aided Same-day Diagnostic Testing Following an Abnormal Screening Mammogram.

Lin Y, Hoyt AC, Manuel VG, Inkelas M, Maehara CK, Ayvaci MUS, Ahsen ME, Hsu W

pubmed logopapersJan 1 2024
Artificial intelligence (AI) shows promise in clinical tasks, yet its integration into workflows remains underexplored. This study proposes an AI-aided same-day diagnostic imaging workup to reduce recall rates following abnormal screening mammograms and alleviate patient anxiety while waiting for the diagnostic examinations. Using discrete simulation, we found minimal disruption to the workflow (a 4% reduction in daily patient volume or a 2% increase in operating time) under specific conditions: operation from 9 am to 12 pm with all radiologists managing all patient types (screenings, diagnostics, and biopsies). Costs specific to the AI-aided same-day diagnostic workup include AI software expenses and potential losses from unused pre-reserved slots for same-day diagnostic workups. These simulation findings can inform the implementation of an AI-aided same-day diagnostic workup, with future research focusing on its potential benefits, including improved patient satisfaction, reduced anxiety, lower recall rates, and shorter time to cancer diagnoses and treatment.
Page 186 of 1861854 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.