Kernelized weighted local information based picture fuzzy clustering with multivariate coefficient of variation and modified total Bregman divergence measure for brain MRI image segmentation.

Authors

Lohit H,Kumar D

Affiliations (2)

  • Department of Applied Mathematics, Delhi Technological University, 110042, New Delhi, India.
  • Department of Applied Mathematics, Delhi Technological University, 110042, New Delhi, India. Electronic address: [email protected].

Abstract

This paper proposes a novel clustering method for noisy image segmentation using a kernelized weighted local information approach under the Picture Fuzzy Set (PFS) framework. Existing kernel-based fuzzy clustering methods struggle with noisy environments and non-linear structures, while intuitionistic fuzzy clustering methods face limitations in handling uncertainty in real-world medical images. To address these challenges, we introduce a local picture fuzzy information measure, developed for the first time using Multivariate Coefficient of Variation (MCV) theory, enhancing robustness in segmentation. Additionally, we integrate non-Euclidean distance measures, including kernel distance for local information computation and modified total Bregman divergence (MTBD) measure for improving clustering accuracy. This combination enhances both local spatial consistency and global membership estimation, leading to precise segmentation. The proposed method is extensively evaluated on synthetic images with Gaussian, Salt and Pepper, and mixed noise, along with Brainweb, IBSR, and MRBrainS18 MRI datasets under varying Rician noise levels, and a CT image template. Furthermore, we benchmark our proposed method against two deep learning-based segmentation models, ResNet34-LinkNet and patch-based U-Net. Experimental results demonstrate significant improvements in segmentation accuracy, as validated by metrics such as Dice Score, Fuzzy Performance Index, Modified Partition Entropy, Average Volume Difference (AVD), and the XB index. Additionally, Friedman's statistical test confirms the superior performance of our approach compared to state-of-the-art clustering methods for noisy image segmentation. To facilitate reproducibility, the implementation of our proposed method is made publicly available at: Google Drive Repository.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.