The value of artificial intelligence in PSMA PET: a pathway to improved efficiency and results.
Dadgar H, Hong X, Karimzadeh R, Ibragimov B, Majidpour J, Arabi H, Al-Ibraheem A, Khalaf AN, Anwar FM, Marafi F, Haidar M, Jafari E, Zarei A, Assadi M
•papers•May 30 2025This systematic review investigates the potential of artificial intelligence (AI) in improving the accuracy and efficiency of prostate-specific membrane antigen positron emission tomography (PSMA PET) scans for detecting metastatic prostate cancer. A comprehensive literature search was conducted across Medline, Embase, and Web of Science, adhering to PRISMA guidelines. Key search terms included "artificial intelligence," "machine learning," "deep learning," "prostate cancer," and "PSMA PET." The PICO framework guided the selection of studies focusing on AI's application in evaluating PSMA PET scans for staging lymph node and distant metastasis in prostate cancer patients. Inclusion criteria prioritized original English-language articles published up to October 2024, excluding studies using non-PSMA radiotracers, those analyzing only the CT component of PSMA PET-CT, studies focusing solely on intra-prostatic lesions, and non-original research articles. The review included 22 studies, with a mix of prospective and retrospective designs. AI algorithms employed included machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs). The studies explored various applications of AI, including improving diagnostic accuracy, sensitivity, differentiation from benign lesions, standardization of reporting, and predicting treatment response. Results showed high sensitivity (62% to 97%) and accuracy (AUC up to 98%) in detecting metastatic disease, but also significant variability in positive predictive value (39.2% to 66.8%). AI demonstrates significant promise in enhancing PSMA PET scan analysis for metastatic prostate cancer, offering improved efficiency and potentially better diagnostic accuracy. However, the variability in performance and the "black box" nature of some algorithms highlight the need for larger prospective studies, improved model interpretability, and the continued involvement of experienced nuclear medicine physicians in interpreting AI-assisted results. AI should be considered a valuable adjunct, not a replacement, for expert clinical judgment.