Automated Computer Vision Methods for Image Segmentation, Stereotactic Localization, and Functional Outcome Prediction of Basal Ganglia Hemorrhages.

Authors

Kashkoush A,Davison MA,Achey R,Gomes J,Rasmussen P,Kshettry VR,Moore N,Bain M

Affiliations (3)

  • Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
  • Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Abstract

Basal ganglia intracranial hemorrhage (bgICH) morphology is associated with postoperative functional outcomes. We hypothesized that bgICH spatial representation modeling could be automated for functional outcome prediction after minimally invasive surgical (MIS) evacuation. A training set of 678 computed tomography head and computed tomography angiography images from 63 patients were used to train key-point detection and instance segmentation convolutional neural network-based models for anatomic landmark identification and bgICH segmentation. Anatomic landmarks included the bilateral orbital rims at the globe's maximum diameter and the posterior-most aspect of the tentorial incisura, which were used to define a universal stereotactic reference frame across patients. Convolutional neural network models were tested using volumetric computed tomography head/computed tomography angiography scans from 45 patients who underwent MIS bgICH evacuation with recorded modified Rankin Scales within one year after surgery. bgICH volumes were highly correlated (R2 = 0.95, P < .001) between manual (median 39-mL) and automatic (median 38-mL) segmentation methods. The absolute median difference between groups was 2-mL (IQR: 1-6 mL). Median localization accuracy (distance between automated and manually designated coordinate frames) was 4 mm (IQR: 3-6). Landmark coordinates were highly correlated in the x- (medial-lateral), y- (anterior-posterior), and z-axes (rostral-caudal) for all 3 landmarks (R2 range = 0.95-0.99, P < .001 for all). Functional outcome (modified Rankin Scale 4-6) was predicted with similar model performance using automated (area under the receiver operating characteristic curve = 0.81, 95% CI: 0.67-0.94) and manually (area under the receiver operating characteristic curve = 0.84, 95% CI: 0.72-0.96) constructed spatial representation models (P = .173). Computer vision models can accurately replicate bgICH manual segmentation, stereotactic localization, and prognosticate functional outcomes after MIS bgICH evacuation.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.