Sort by:
Page 10 of 2982974 results

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

Herold A, Sobotka D, Beer L, Bastati N, Poetter-Lang S, Weber M, Reiberger T, Mandorfer M, Semmler G, Simbrunner B, Wichtmann BD, Ba-Ssalamah SA, Trauner M, Ba-Ssalamah A, Langs G

pubmed logopapersAug 12 2025
We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and fibrosis/portal hypertension. We assessed retrospectively healthy controls, non-advanced and advanced chronic liver disease (ACLD) patients using a 3D U-Net model for hepatic vessel segmentation on portal venous phase gadoxetic acid-enhanced 3-T MRI. Total (TVVR), hepatic (HVVR), and intrahepatic portal vein-to-volume ratios (PVVR) were compared between groups and correlated with: albumin-bilirubin (ALBI) and "model for end-stage liver disease-sodium" (MELD-Na) score) and fibrosis/portal hypertension (Fibrosis-4 (FIB-4) Score, liver stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), platelet count (PLT), and spleen volume. We included 197 subjects, aged 54.9 ± 13.8 years (mean ± standard deviation), 111 males (56.3%): 35 healthy controls, 44 non-ACLD, and 118 ACLD patients. TVVR and HVVR were highest in controls (3.9; 2.1), intermediate in non-ACLD (2.8; 1.7), and lowest in ACLD patients (2.3; 1.0) (p ≤ 0.001). PVVR was reduced in both non-ACLD and ACLD patients (both 1.2) compared to controls (1.7) (p ≤ 0.001), but showed no difference between CLD groups (p = 0.999). HVVR significantly correlated indirectly with FIB-4, ALBI, MELD-Na, LSM, and spleen volume (ρ ranging from -0.27 to -0.40), and directly with PLT (ρ = 0.36). TVVR and PVVR showed similar but weaker correlations. Deep learning-based hepatic vessel volumetry demonstrated differences between healthy liver and chronic liver disease stages and shows correlations with established markers of disease severity. Hepatic vessel volumetry demonstrates differences between healthy liver and chronic liver disease stages, potentially serving as a non-invasive imaging biomarker. Deep learning-based vessel analysis can provide automated quantification of hepatic vascular changes across healthy liver and chronic liver disease stages. Automated quantification of hepatic vasculature shows significantly reduced hepatic vascular volume in advanced chronic liver disease compared to non-advanced disease and healthy liver. Decreased hepatic vascular volume, particularly in the hepatic venous system, correlates with markers of liver dysfunction, fibrosis, and portal hypertension.

Spatial Prior-Guided Dual-Path Network for Thyroid Nodule Segmentation.

Pang C, Miao H, Zhang R, Liu Q, Lyu L

pubmed logopapersAug 12 2025
Accurate segmentation of thyroid nodules in ultrasound images is critical for clinical diagnosis but remains challenging due to low contrast and complex anatomical structures. Existing deep learning methods often rely solely on local nodule features, lacking anatomical prior knowledge of the thyroid region, which can result in misclassification of non-thyroid tissues, especially in low-quality scans. To address these issues, we propose a Spatial Prior-Guided Dual-Path Network that integrates a prior-aware encoder to model thyroid anatomical structures and a low-cost heterogeneous encoder to preserve fine-grained multi-scale features, enhancing both spatial detail and contextual awareness. To capture the diverse and irregular appearances of nodules, we design a CrossBlock module, which combines an efficient cross-attention mechanism with mixed-scale convolutional operations to enable global context modeling and local feature extraction. The network further employs a dual-decoder architecture, where one decoder learns thyroid region priors and the other focuses on accurate nodule segmentation. Gland-specific features are hierarchically refined and injected into the nodule decoder to enhance boundary delineation through anatomical guidance. Extensive experiments on the TN3K and MTNS datasets demonstrate that our method consistently outperforms state-of-the-art approaches, particularly in boundary precision and localization accuracy, offering practical value for preoperative planning and clinical decision-making.

Amorphous-Crystalline Synergy in CoSe<sub>2</sub>/CoS<sub>2</sub> Heterostructures: High-Performance SERS Substrates for Esophageal Tumor Cell Discrimination.

Zhang M, Liu A, Meng X, Wang Y, Yu J, Liu H, Sun Y, Xu L, Song X, Zhang J, Sun L, Lin J, Wu A, Wang X, Chai N, Li L

pubmed logopapersAug 12 2025
Although surface-enhanced Raman scattering (SERS) spectroscopy is applied in biomedicine deeply, the design of new substrates for wider detection is still in demand. Crystalline-amorphous CoSe<sub>2</sub>/CoS<sub>2</sub> heterojunction is synthesized, with high SERS performance and stability, composed of orthorhombic (o-CoSe<sub>2</sub>) and amorphous CoS<sub>2</sub> (a-CoS<sub>2</sub>). By adjusting feed ratio, the proportion of a-CoS<sub>2</sub> to o-CoSe<sub>2</sub> is regulated, where CoSe<sub>2</sub>/CoS<sub>2</sub>-S50 with a 1:1 ratio demonstrates the best SERS performance due to the balance of two components. It is confirmed through experimental and simulation methods that o-CoSe<sub>2</sub> and a-CoS<sub>2</sub> have unique contribution, respectively: a-CoS<sub>2</sub> has rich vacancies and a higher density of active sites, while o-CoSe<sub>2</sub> further enriches vacancies, enhances electron delocalization and charge transfer (CT) capabilities, and reduces bandgap. Besides, CoSe<sub>2</sub>/CoS<sub>2</sub>-S50 achieves not only SERS detection of two common esophageal tumor cells (KYSE and TE) and healthy oral epithelial cells (het-1A), but also the discrimination with high sensitivity, specificity, and accuracy via machine learning (ML) analysis.

Comparative analysis of tumor and mesorectum radiomics in predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.

Cantürk A, Yarol RC, Tasak AS, Gülmez H, Kadirli K, Bişgin T, Manoğlu B, Sökmen S, Öztop İ, Görken Bilkay İ, Sağol Ö, Sarıoğlu S, Barlık F

pubmed logopapersAug 12 2025
Neoadjuvant chemoradiotherapy (CRT) is known to increase sphincter preservation rates and decrease the risk of postoperative recurrence in patients with locally advanced rectal tumors. However, the response to CRT in patients with locally advanced rectal cancer (LARC) varies significantly. The objective of this study was to compare the performance of models based on radiomics features of the tumor alone, the mesorectum alone, and a combination of both in predicting tumor response to neoadjuvant CRT in LARC. This retrospective study included 101 patients with LARC. Patients were categorized as responders (modified Ryan score 0-1) and non-responders (modified Ryan score 2-3). Pre-CRT magnetic resonance imaging evaluations included tumor-T2 weighted imaging (T2WI), tumor-diffusion weighted imaging (DWI), tumor-apparent diffusion coefficient (ADC) maps, and mesorectum-T2WI. The first radiologist segmented the tumor and mesorectum from T2-weighted images, and the second radiologist performed tumor segmentation using DWI and ADC maps. Feature reproducibility was assessed by calculating the intraclass correlation coefficient (ICC) using a two-way mixed-effects model with absolute agreement for single measurements [ICC(3,1)]. Radiomic features with ICC values <0.60 were excluded from further analysis. Subsequently, the least absolute shrinkage and selection operator method was applied to select the most relevant radiomic features. The top five features with the highest coefficients were selected for model training. To address class imbalance between groups, the synthetic minority over-sampling technique was applied exclusively to the training folds during cross-validation. Thereafter, classification learner models were developed using 10-fold cross-validation to achieve the highest performance. The performance metrics of the final models, including accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC), were calculated to evaluate the classification performance. Among the 101 patients, 36 were classified as responders and 65 as non-responders. A total of 25 radiomic features from the tumor and 20 from the mesorectum were found to be statistically significant (<i>P</i> < 0.05). The AUC values for predicting treatment response were 0.781 for the tumor-only model (random forest), 0.726 for the mesorectum-only model (logistic regression), and 0.837 for the combined model (logistic regression). Radiomic features derived from both the tumor and mesorectum demonstrated complementary prognostic value in predicting treatment response. The inclusion of mesorectal features substantially improved model performance, with the combined model achieving the highest AUC value. These findings highlight the added predictive contribution of the mesorectum as a key peritumoral structure in radiomics-based assessment. Currently, the response of locally advanced rectal tumors to neoadjuvant therapy cannot be reliably predicted using conventional methods. Recently, the significance of the mesorectum in predicting treatment response has gained attention, although the number of studies focusing on this area remains limited. In our study, we performed radiomics analyses of both the tumor tissue and the mesorectum to predict neoadjuvant treatment response.

The association of symptoms, pulmonary function test and computed tomography in interstitial lung disease at the onset of connective tissue disease: an observational study with artificial intelligence analysis of high-resolution computed tomography.

Hoffmann T, Teichgräber U, Brüheim LB, Lassen-Schmidt B, Renz D, Weise T, Krämer M, Oelzner P, Böttcher J, Güttler F, Wolf G, Pfeil A

pubmed logopapersAug 12 2025
Interstitial lung disease (ILD) is a common and serious organ manifestation in patients with connective tissue disease (CTD), but it is uncertain whether there is a difference in ILD between symptomatic and asymptomatic patients. Therefore, we conducted a study to evaluate differences in the extent of ILD based on radiological findings between symptomatic/asymptomatic patients, using an artificial intelligence (AI)-based quantification of pulmonary high-resolution computed tomography (AIpqHRCT). Within the study, 67 cross-sectional HRCT datasets and clinical data (including pulmonary function test) of consecutively patients (mean age: 57.1 ± 14.7 years, woman n = 45; 67.2%) with both, initial diagnosis of CTD, with systemic sclerosis being the most frequent (n = 21, 31.3%), and ILD (all without immunosuppressive therapy), were analysed using AIqpHRCT. 25.4% (n = 17) of the patients with ILD at initial diagnosis of CTD had no pulmonary symptoms. Regarding the baseline characteristics (age, gender, disease), there were no significant difference between the symptomatic and asymptomatic group. The pulmonary function test (PFT) revealed the following mean values (%predicted) in the symptomatic and asymptomatic group, respectively: Forced vital capacity (FVC) 69.4 ± 17.4% versus 86.1 ± 15.8% (p = 0.001), and diffusing capacity of the lung for carbon monoxide (DLCO) 49.7 ± 17.9% versus 60.0 ± 15.8% (p = 0.043). AIqpHRCT data showed a significant higher amount of high attenuated volume (HAV) (14.8 ± 11.0% versus 8.9 ± 3.9%; p = 0.021) and reticulations (5.4 ± 8.7% versus 1.4 ± 1.5%; p = 0.035) in symptomatic patients. A quarter of patients with ILD at the time of initial CTD diagnosis had no pulmonary symptoms, showing DLCO were reduced in both groups. Also, AIqpHRCT demonstrated clinically relevant ILD in asymptomatic patients. These results underline the importance of an early risk adapted screening for ILD also in asymptomatic CTD patients, as ILD is associated with increased mortality.

Development and validation of machine learning models to predict vertebral artery injury by C2 pedicle screws.

Ye B, Sun Y, Chen G, Wang B, Meng H, Shan L

pubmed logopapersAug 12 2025
Cervical 2 pedicle screw (C2PS) fixation is widely used in posterior cervical surgery but carries risks of vertebral artery injury (VAI), a rare yet severe complication. This study aimed to identify risk factors for VAI during C2PS placement and develop a machine learning (ML)-based predictive model to enhance preoperative risk assessment. Clinical and radiological data from 280 patients undergoing head and neck CT angiography were retrospectively analyzed. Three-dimensional reconstructed images simulated C2PS placement, classifying patients into injury (n = 98) and non-injury (n = 182) groups. Fifteen variables, including characteristic of patients and anatomic variables were evaluated. Eight ML algorithms were trained (70% training cohort) and validated (30% validation cohort). Model performance was assessed using AUC, sensitivity, specificity, and SHAP (SHapley Additive exPlanations) for interpretability. Six key risk factors were identified: pedicle diameter, high-riding vertebral artery (HRVA), intra-axial vertebral artery (IAVA), vertebral artery diameter (VAD), distance between the transverse foramen and the posterior end of the vertebral body (TFPEVB) and distance between the vertebral artery and the vertebral body (VAVB). The neural network model (NNet) demonstrated optimal predictive performance, achieving AUCs of 0.929 (training) and 0.936 (validation). SHAP analysis confirmed these variables as primary contributors to VAI risk. This study established an ML-driven predictive model for VAI during C2PS placement, highlighting six critical anatomical and radiological risk factors. Integrating this model into clinical workflows may optimize preoperative planning, reduce complications, and improve surgical outcomes. External validation in multicenter cohorts is warranted to enhance generalizability.

CRCFound: A Colorectal Cancer CT Image Foundation Model Based on Self-Supervised Learning.

Yang J, Cai D, Liu J, Zhuang Z, Zhao Y, Wang FA, Li C, Hu C, Gai B, Chen Y, Li Y, Wang L, Gao F, Wu X

pubmed logopapersAug 12 2025
Accurate risk stratification is crucial for determining the optimal treatment plan for patients with colorectal cancer (CRC). However, existing deep learning models perform poorly in the preoperative diagnosis of CRC and exhibit limited generalizability, primarily due to insufficient annotated data. To address these issues, CRCFound, a self-supervised learning-based CT image foundation model for CRC is proposed. After pretraining on 5137 unlabeled CRC CT images, CRCFound can learn universal feature representations and provide efficient and reliable adaptability for various clinical applications. Comprehensive benchmark tests are conducted on six different diagnostic tasks and two prognosis tasks to validate the performance of the pretrained model. Experimental results demonstrate that CRCFound can easily transfer to most CRC tasks and exhibit outstanding performance and generalization ability. Overall, CRCFound can solve the problem of insufficient annotated data and perform well in a wide range of downstream tasks of CRC, making it a promising solution for accurate diagnosis and personalized treatment of CRC patients.

Machine learning models for diagnosing lymph node recurrence in postoperative PTC patients: a radiomic analysis.

Pang F, Wu L, Qiu J, Guo Y, Xie L, Zhuang S, Du M, Liu D, Tan C, Liu T

pubmed logopapersAug 12 2025
Postoperative papillary thyroid cancer (PTC) patients often have enlarged cervical lymph nodes due to inflammation or hyperplasia, which complicates the assessment of recurrence or metastasis. This study aimed to explore the diagnostic capabilities of computed tomography (CT) imaging and radiomic analysis to distinguish the recurrence of cervical lymph nodes in patients with PTC postoperatively. A retrospective analysis of 194 PTC patients who underwent total thyroidectomy was conducted, with 98 cases of cervical lymph node recurrence and 96 cases without recurrence. Using 3D Slicer software, Regions of Interest (ROI) were delineated on enhanced venous phase CT images, analyzing 302 positive and 391 negative lymph nodes. These nodes were randomly divided into training and validation sets in a 3:2 ratio. Python was used to extract radiomic features from the ROIs and to develop radiomic models. Univariate and multivariate analyses identified statistically significant risk factors for cervical lymph node recurrence from clinical data, which, when combined with radiomic scores, formed a nomogram to predict recurrence risk. The diagnostic efficacy and clinical utility of the models were assessed using ROC curves, calibration curves, and Decision Curve Analysis (DCA). This study analyzed 693 lymph nodes (302 positive and 391 negative) and identified 35 significant radiomic features through dimensionality reduction and selection. The three machine learning models, including the Lasso regression, Support Vector Machine (SVM), and RF radiomics models, showed.

Diagnostic performance of ultrasound S-Detect technology in evaluating BI-RADS-4 breast nodules ≤ 20 mm and > 20 mm.

Xing B, Gu C, Fu C, Zhang B, Tan Y

pubmed logopapersAug 12 2025
This study aimed to explore the diagnostic performance of ultrasound S-Detect in differentiating Breast Imaging-Reporting and Data System (BI-RADS) 4 breast nodules ≤ 20 mm and > 20 mm. Between November 2020 and November 2022, a total of 382 breast nodules in 312 patients were classified as BI-RADS-4 by conventional ultrasound. Using pathology results as the gold standard, we applied receiver operator characteristics (ROC), sensitivity (SE), specificity (SP), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) to analyze the diagnostic value of BI-RADS, S-Detect, and the two techniques in combination (Co-Detect) in the diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. There were 382 BI-RADS-4 nodules, of which 151 were pathologically confirmed as malignant, and 231 as benign. In lesions ≤ 20 mm, the SE, SP, ACC, PPV, NPV, and area under the curve (AUC) of the BI-RADS group were 77.27%, 89.73%, 85.71%, 78.16%, 89.24%, 0.835, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 92.05%, 78.92%, 83.15%, 67.50%, 95.43%, 0.855, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 89.77%, 93.51%, 92.31%, 86.81%, 95.05%, 0.916, respectively. The differences of SE, ACC, NPV, and AUC between the BI-RADS group and the Co-Detect group were statistically significant (P < 0.05). In lesions > 20 mm, SE, SP, ACC, PPV, NPV, and AUC of the BI-RADS group were 88.99%, 89.13%, 88.99%, 91.80%, 85.42%, 0.890, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 98.41%, 69.57%, 86.24%, 81.58%, 96.97%, 0.840, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 98.41%, 91.30%, 95.41%, 93.94%, 97.67%, 0.949, respectively. A total of 166 BI-RADS 4 A nodules were downgraded to category 3 by Co-Detect, with 160 (96.4%) confirmed as benign and 6 (all ≤ 20 mm) as false negatives. Conversely, 25 nodules were upgraded to 4B, of which 19 (76.0%) were malignant. The difference in AUC between the BI-RADS group and the Co-Detect group was statistically significant (P < 0.05). S-Detect combined with BI-RADS is effective in the differential diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. However, its performance is particularly pronounced in lesions ≤ 20 mm, where it contributes to a significant reduction in unnecessary biopsies.

Fully Automatic Volume Segmentation Using Deep Learning Approaches to Assess the Thoracic Aorta, Visceral Abdominal Aorta, and Visceral Vasculature.

Pouncey AL, Charles E, Bicknell C, Bérard X, Ducasse E, Caradu C

pubmed logopapersAug 12 2025
Computed tomography angiography (CTA) imaging is essential to evaluate and analyse complex abdominal and thoraco-abdominal aortic aneurysms. However, CTA analyses are labour intensive, time consuming, and prone to interphysician variability. Fully automatic volume segmentation (FAVS) using artificial intelligence with deep learning has been validated for infrarenal aorta imaging but requires further testing for thoracic and visceral aorta segmentation. This study assessed FAVS accuracy against physician controlled manual segmentation (PCMS) in the descending thoracic aorta, visceral abdominal aorta, and visceral vasculature. This was a retrospective, multicentre, observational cohort study. Fifty pre-operative CTAs of patients with abdominal aortic aneurysm were randomly selected. Comparisons between FAVS and PCMS and assessment of inter- and intra-observer reliability of PCMS were performed. Volumetric segmentation performance was evaluated using sensitivity, specificity, Dice similarity coefficient (DSC), and Jaccard index (JI). Visceral vessel identification was compared by analysing branchpoint coordinates. Bland-Altman limits of agreement (BA-LoA) were calculated for proximal visceral diameters (excluding duplicate renals). FAVS demonstrated performance comparable with PCMS for volumetric segmentation, with a median DSC of 0.93 (interquartile range [IQR] 0.03), JI of 0.87 (IQR 0.05), sensitivity of 0.99 (IQR 0.01), and specificity of 1.00 (IQR 0.00). These metrics are similar to interphysician comparisons: median DSC 0.93 (IQR 0.07), JI 0.87 (IQR 0.12), sensitivity 0.90 (IQR 0.08), and specificity 1.00 (IQR 0.00). FAVS correctly identified 99.5% (183/184) of visceral vessels. Branchpoint coordinates for FAVS and PCMS were within the limits of CTA spatial resolution (Δx -0.33 [IQR 2.82], Δy 0.61 [IQR 4.85], Δz 2.10 [IQR 4.69] mm). BA-LoA for proximal visceral diameter measurements showed reasonable agreement: FAVS vs. PCMS mean difference -0.11 ± 5.23 mm compared with interphysician variability of 0.03 ± 5.27 mm. FAVS provides accurate, efficient segmentation of the thoracic and visceral aorta, delivering performance comparable with manual segmentation by expert physicians. This technology may enhance clinical workflows for monitoring and planning treatments for complex abdominal and thoraco-abdominal aortic aneurysms.
Page 10 of 2982974 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.