Sort by:
Page 1 of 24236 results

Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.

Muhtadi S, Gallippi CM

pubmed logopapersNov 1 2025
We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches. An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks. The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level. Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.

Automated Whole-Brain Focal Cortical Dysplasia Detection Using MR Fingerprinting With Deep Learning.

Ding Z, Morris S, Hu S, Su TY, Choi JY, Blümcke I, Wang X, Sakaie K, Murakami H, Alexopoulos AV, Jones SE, Najm IM, Ma D, Wang ZI

pubmed logopapersJun 10 2025
Focal cortical dysplasia (FCD) is a common pathology for pharmacoresistant focal epilepsy, yet detection of FCD on clinical MRI is challenging. Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique providing fast and reliable tissue property measurements. The aim of this study was to develop an MRF-based deep-learning (DL) framework for whole-brain FCD detection. We included patients with pharmacoresistant focal epilepsy and pathologically/radiologically diagnosed FCD, as well as age-matched and sex-matched healthy controls (HCs). All participants underwent 3D whole-brain MRF and clinical MRI scans. T1, T2, gray matter (GM), and white matter (WM) tissue fraction maps were reconstructed from a dictionary-matching algorithm based on the MRF acquisition. A 3D ROI was manually created for each lesion. All MRF maps and lesion labels were registered to the Montreal Neurological Institute space. Mean and SD T1 and T2 maps were calculated voxel-wise across using HC data. T1 and T2 <i>z</i>-score maps for each patient were generated by subtracting the mean HC map and dividing by the SD HC map. MRF-based morphometric maps were produced in the same manner as in the morphometric analysis program (MAP), based on MRF GM and WM maps. A no-new U-Net model was trained using various input combinations, with performance evaluated through leave-one-patient-out cross-validation. We compared model performance using various input combinations from clinical MRI and MRF to assess the impact of different input types on model effectiveness. We included 40 patients with FCD (mean age 28.1 years, 47.5% female; 11 with FCD IIa, 14 with IIb, 12 with mMCD, 3 with MOGHE) and 67 HCs. The DL model with optimal performance used all MRF-based inputs, including MRF-synthesized T1w, T1z, and T2z maps; tissue fraction maps; and morphometric maps. The patient-level sensitivity was 80% with an average of 1.7 false positives (FPs) per patient. Sensitivity was consistent across subtypes, lobar locations, and lesional/nonlesional clinical MRI. Models using clinical images showed lower sensitivity and higher FPs. The MRF-DL model also outperformed the established MAP18 pipeline in sensitivity, FPs, and lesion label overlap. The MRF-DL framework demonstrated efficacy for whole-brain FCD detection. Multiparametric MRF features from a single scan offer promising inputs for developing a deep-learning tool capable of detecting subtle epileptic lesions.

Evolution of Cortical Lesions and Function-Specific Cognitive Decline in People With Multiple Sclerosis.

Krijnen EA, Jelgerhuis J, Van Dam M, Bouman PM, Barkhof F, Klawiter EC, Hulst HE, Strijbis EMM, Schoonheim MM

pubmed logopapersJun 1 2025
Cortical lesions in multiple sclerosis (MS) severely affect cognition, but their longitudinal evolution and impact on specific cognitive functions remain understudied. This study investigates the evolution of function-specific cognitive functioning over 10 years in people with MS and assesses the influence of cortical lesion load and formation on these trajectories. In this prospectively collected study, people with MS underwent 3T MRI (T1 and fluid-attenuated inversion recovery) at 3 study visits between 2008 and 2022. Cognitive functioning was evaluated based on neuropsychological assessment reflecting 7 cognitive functions: attention; executive functioning (EF); information processing speed (IPS); verbal fluency; and verbal, visuospatial, and working memory. Cortical lesions were manually identified on artificial intelligence-generated double-inversion recovery images. Linear mixed models were constructed to assess the temporal evolution between cortical lesion load and function-specific cognitive decline. In addition, analyses were stratified by MS disease stage: early and late relapsing-remitting MS (cutoff disease duration at 15 years) and progressive MS. The study included 223 people with MS (mean age, 47.8 ± 11.1 years; 153 women) and 62 healthy controls. All completed 5-year follow-up, and 37 healthy controls and 94 with MS completed 10-year follow-up. At baseline, people with MS exhibited worse functioning of IPS and working memory. Over 10 years, cognitive decline was most severe in attention, verbal memory, and EF. At baseline, people with MS had a median cortical lesion count of 7 (range 0-73), which was related to subsequent decline in attention (B[95% CI] = -0.22 [-0.40 to -0.03]) and verbal fluency (B[95% CI] = -0.23[-0.37 to -0.09]). Over time, cortical lesions increased by a median count of 4 (range -2 to 71), particularly in late and progressive disease, and was related to decline in verbal fluency (B [95% CI] = -0.33 [-0.51 to -0.15]). The associations between (change in) cortical lesion load and cognitive decline were not modified by MS disease stage. Cognition worsened over 10 years, particularly affecting attention, verbal memory, and EF, while preexisting impairments were worst in other functions such as IPS. Worse baseline cognitive functioning was related to baseline cortical lesions, whereas baseline cortical lesions and cortical lesion formation were related to cognitive decline in functions less affected at baseline. Accumulating cortical damage leads to spreading of cognitive impairments toward additional functions.

Computer-aided assessment for enlarged fetal heart with deep learning model.

Nurmaini S, Sapitri AI, Roseno MT, Rachmatullah MN, Mirani P, Bernolian N, Darmawahyuni A, Tutuko B, Firdaus F, Islami A, Arum AW, Bastian R

pubmed logopapersMay 16 2025
Enlarged fetal heart conditions may indicate congenital heart diseases or other complications, making early detection through prenatal ultrasound essential. However, manual assessments by sonographers are often subjective, time-consuming, and inconsistent. This paper proposes a deep learning approach using the You Only Look Once (YOLO) architecture to automate fetal heart enlargement assessment. Using a set of ultrasound videos, YOLOv8 with a CBAM module demonstrated superior performance compared to YOLOv11 with self-attention. Incorporating the ResNeXtBlock-a residual network with cardinality-additionally enhanced accuracy and prediction consistency. The model exhibits strong capability in detecting fetal heart enlargement, offering a reliable computer-aided tool for sonographers during prenatal screenings. Further validation is required to confirm its clinical applicability. By improving early and accurate detection, this approach has the potential to enhance prenatal care, facilitate timely interventions, and contribute to better neonatal health outcomes.

Automated CT segmentation for lower extremity tissues in lymphedema evaluation using deep learning.

Na S, Choi SJ, Ko Y, Urooj B, Huh J, Cha S, Jung C, Cheon H, Jeon JY, Kim KW

pubmed logopapersMay 16 2025
Clinical assessment of lymphedema, particularly for lymphedema severity and fluid-fibrotic lesions, remains challenging with traditional methods. We aimed to develop and validate a deep learning segmentation tool for automated tissue component analysis in lower extremity CT scans. For development datasets, lower extremity CT venography scans were collected in 118 patients with gynecologic cancers for algorithm training. Reference standards were created by segmentation of fat, muscle, and fluid-fibrotic tissue components using 3D slicer. A deep learning model based on the Unet++ architecture with an EfficientNet-B7 encoder was developed and trained. Segmentation accuracy of the deep learning model was validated in an internal validation set (n = 10) and an external validation set (n = 10) using Dice similarity coefficient (DSC) and volumetric similarity (VS). A graphical user interface (GUI) tool was developed for the visualization of the segmentation results. Our deep learning algorithm achieved high segmentation accuracy. Mean DSCs for each component and all components ranged from 0.945 to 0.999 in the internal validation set and 0.946 to 0.999 in the external validation set. Similar performance was observed in the VS, with mean VSs for all components ranging from 0.97 to 0.999. In volumetric analysis, mean volumes of the entire leg and each component did not differ significantly between reference standard and deep learning measurements (p > 0.05). Our GUI displays lymphedema mapping, highlighting segmented fat, muscle, and fluid-fibrotic components in the entire leg. Our deep learning algorithm provides an automated segmentation tool enabling accurate segmentation, volume measurement of tissue component, and lymphedema mapping. Question Clinical assessment of lymphedema remains challenging, particularly for tissue segmentation and quantitative severity evaluation. Findings A deep learning algorithm achieved DSCs > 0.95 and VS > 0.97 for fat, muscle, and fluid-fibrotic components in internal and external validation datasets. Clinical relevance The developed deep learning tool accurately segments and quantifies lower extremity tissue components on CT scans, enabling automated lymphedema evaluation and mapping with high segmentation accuracy.

A deep learning-based approach to automated rib fracture detection and CWIS classification.

Marting V, Borren N, van Diepen MR, van Lieshout EMM, Wijffels MME, van Walsum T

pubmed logopapersMay 16 2025
Trauma-induced rib fractures are a common injury. The number and characteristics of these fractures influence whether a patient is treated nonoperatively or surgically. Rib fractures are typically diagnosed using CT scans, yet 19.2-26.8% of fractures are still missed during assessment. Another challenge in managing rib fractures is the interobserver variability in their classification. Purpose of this study was to develop and assess an automated method that detects rib fractures in CT scans, and classifies them according to the Chest Wall Injury Society (CWIS) classification. 198 CT scans were collected, of which 170 were used for training and internal validation, and 28 for external validation. Fractures and their classifications were manually annotated in each of the scans. A detection and classification network was trained for each of the three components of the CWIS classifications. In addition, a rib number labeling network was trained for obtaining the rib number of a fracture. Experiments were performed to assess the method performance. On the internal test set, the method achieved a detection sensitivity of 80%, at a precision of 87%, and an F1-score of 83%, with a mean number of FPPS (false positives per scan) of 1.11. Classification sensitivity varied, with the lowest being 25% for complex fractures and the highest being 97% for posterior fractures. The correct rib number was assigned to 94% of the detected fractures. The custom-trained nnU-Net correctly labeled 95.5% of all ribs and 98.4% of fractured ribs in 30 patients. The detection and classification performance on the external validation dataset was slightly better, with a fracture detection sensitivity of 84%, precision of 85%, F1-score of 84%, FPPS of 0.96 and 95% of the fractures were assigned the correct rib number. The method developed is able to accurately detect and classify rib fractures in CT scans, there is room for improvement in the (rare and) underrepresented classes in the training set.

Impact of sarcopenia and obesity on mortality in older adults with SARS-CoV-2 infection: automated deep learning body composition analysis in the NAPKON-SUEP cohort.

Schluessel S, Mueller B, Tausendfreund O, Rippl M, Deissler L, Martini S, Schmidmaier R, Stoecklein S, Ingrisch M, Blaschke S, Brandhorst G, Spieth P, Lehnert K, Heuschmann P, de Miranda SMN, Drey M

pubmed logopapersMay 16 2025
Severe respiratory infections pose a major challenge in clinical practice, especially in older adults. Body composition analysis could play a crucial role in risk assessment and therapeutic decision-making. This study investigates whether obesity or sarcopenia has a greater impact on mortality in patients with severe respiratory infections. The study focuses on the National Pandemic Cohort Network (NAPKON-SUEP) cohort, which includes patients over 60 years of age with confirmed severe COVID-19 pneumonia. An innovative approach was adopted, using pre-trained deep learning models for automated analysis of body composition based on routine thoracic CT scans. The study included 157 hospitalized patients (mean age 70 ± 8 years, 41% women, mortality rate 39%) from the NAPKON-SUEP cohort at 57 study sites. A pre-trained deep learning model was used to analyze body composition (muscle, bone, fat, and intramuscular fat volumes) from thoracic CT images of the NAPKON-SUEP cohort. Binary logistic regression was performed to investigate the association between obesity, sarcopenia, and mortality. Non-survivors exhibited lower muscle volume (p = 0.043), higher intramuscular fat volume (p = 0.041), and a higher BMI (p = 0.031) compared to survivors. Among all body composition parameters, muscle volume adjusted to weight was the strongest predictor of mortality in the logistic regression model, even after adjusting for factors such as sex, age, diabetes, chronic lung disease and chronic kidney disease, (odds ratio = 0.516). In contrast, BMI did not show significant differences after adjustment for comorbidities. This study identifies muscle volume derived from routine CT scans as a major predictor of survival in patients with severe respiratory infections. The results underscore the potential of AI supported CT-based body composition analysis for risk stratification and clinical decision making, not only for COVID-19 patients but also for all patients over 60 years of age with severe acute respiratory infections. The innovative application of pre-trained deep learning models opens up new possibilities for automated and standardized assessment in clinical practice.

Artificial intelligence in dentistry: awareness among dentists and computer scientists.

Costa ED, Vieira MA, Ambrosano GMB, Gaêta-Araujo H, Carneiro JA, Zancan BAG, Scaranti A, Macedo AA, Tirapelli C

pubmed logopapersMay 16 2025
For clinical application of artificial intelligence (AI) in dentistry, collaboration with computer scientists is necessary. This study aims to evaluate the knowledge of dentists and computer scientists regarding the utilization of AI in dentistry, especially in dentomaxillofacial radiology. 610 participants (374 dentists and 236 computer scientists) took part in a survey about AI in dentistry and radiographic imaging. Response options contained Likert scale of agreement/disagreement. Descriptive analyses of agreement scores were performed using quartiles (minimum value, first quartile, median, third quartile, and maximum value). Non-parametric Mann-Whitney test was used to compare response scores between two categories (α = 5%). Dentists academics had higher agreement scores for the questions: "knowing the applications of AI in dentistry", "dentists taking the lead in AI research", "AI education should be part of teaching", "AI can increase the price of dental services", "AI can lead to errors in radiographic diagnosis", "AI can negatively interfere with the choice of Radiology specialty", "AI can cause a reduction in the employment of radiologists", "patient data can be hacked using AI" (p < 0.05). Computer scientists had higher concordance scores for the questions "having knowledge in AI" and "AI's potential to speed up and improve radiographic diagnosis". Although dentists acknowledge the potential benefits of AI in dentistry, they remain skeptical about its use and consider it important to integrate the topic of AI into dental education curriculum. On the other hand, computer scientists confirm technical expertise in AI and recognize its potential in dentomaxillofacial radiology.

Machine learning prediction of pathological complete response to neoadjuvant chemotherapy with peritumoral breast tumor ultrasound radiomics: compare with intratumoral radiomics and clinicopathologic predictors.

Yao J, Zhou W, Jia X, Zhu Y, Chen X, Zhan W, Zhou J

pubmed logopapersMay 16 2025
Noninvasive, accurate and novel approaches to predict patients who will achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) could assist treatment strategies. The aim of this study was to explore the application of machine learning (ML) based peritumoral ultrasound radiomics signature (PURS), compared with intratumoral radiomics (IURS) and clinicopathologic factors, for early prediction of pCR. We analyzed 358 locally advanced breast cancer patients (250 in the training set and 108 in the test set), who accepted NAC and post NAC surgery at our institution. The clinical and pathological data were analyzed using the independent t test and the Chi-square test to determine the factors associated with pCR. The PURS and IURS of baseline breast tumors were extracted by using 3D-slicer and PyRadiomics software. Five ML classifiers including linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and adaptive boosting (AdaBoost) were applied to construct radiomics predictive models. The performance of PURS, IURS models and clinicopathologic predictors were assessed with respect to sensitivity, specificity, accuracy and the areas under the curve (AUCs). Ninety-seven patients achieved pCR. The clinicopathologic predictors obtained an AUC of 0.759. Among PURS models, the RF classifier achieved better efficacy (AUC of 0.889) than LR (0.849), AdaBoost (0.823), SVM (0.746) and LDA (0.732). The RF classifier also obtained a maximum AUC of 0.931 than 0.920 (AdaBoost), 0.875 (LR), 0.825 (SVM), and 0.798 (LDA) in IURS models in the test set. The RF based PURS yielded higher predictive ability (AUC 0.889; 95% CI 0.814, 0.947) than clinicopathologic factors (AUC 0.759; 95% CI 0.657, 0.861; p < 0.05), but lower efficacy compared with IURS (AUC 0.931; 95% CI 0.865, 0.980; p < 0.05). The peritumoral US radiomics, as a novel potential biomarker, can assist clinical therapy decisions.

Development and validation of clinical-radiomics deep learning model based on MRI for endometrial cancer molecular subtypes classification.

Yue W, Han R, Wang H, Liang X, Zhang H, Li H, Yang Q

pubmed logopapersMay 16 2025
This study aimed to develop and validate a clinical-radiomics deep learning (DL) model based on MRI for endometrial cancer (EC) molecular subtypes classification. This multicenter retrospective study included EC patients undergoing surgery, MRI, and molecular pathology diagnosis across three institutions from January 2020 to March 2024. Patients were divided into training, internal, and external validation cohorts. A total of 386 handcrafted radiomics features were extracted from each MR sequence, and MoCo-v2 was employed for contrastive self-supervised learning to extract 2048 DL features per patient. Feature selection integrated selected features into 12 machine learning methods. Model performance was evaluated with the AUC. A total of 526 patients were included (mean age, 55.01 ± 11.07). The radiomics model and clinical model demonstrated comparable performance across the internal and external validation cohorts, with macro-average AUCs of 0.70 vs 0.69 and 0.70 vs 0.67 (p = 0.51), respectively. The radiomics DL model, compared to the radiomics model, improved AUCs for POLEmut (0.68 vs 0.79), NSMP (0.71 vs 0.74), and p53abn (0.76 vs 0.78) in the internal validation (p = 0.08). The clinical-radiomics DL Model outperformed both the clinical model and radiomics DL model (macro-average AUC = 0.79 vs 0.69 and 0.73, in the internal validation [p = 0.02], 0.74 vs 0.67 and 0.69 in the external validation [p = 0.04]). The clinical-radiomics DL model based on MRI effectively distinguished EC molecular subtypes and demonstrated strong potential, with robust validation across multiple centers. Future research should explore larger datasets to further uncover DL's potential. Our clinical-radiomics DL model based on MRI has the potential to distinguish EC molecular subtypes. This insight aids in guiding clinicians in tailoring individualized treatments for EC patients. Accurate classification of EC molecular subtypes is crucial for prognostic risk assessment. The clinical-radiomics DL model outperformed both the clinical model and the radiomics DL model. The MRI features exhibited better diagnostic performance for POLEmut and p53abn.
Page 1 of 24236 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.