Zero-shot segmentation of spinal vertebrae with metastatic lesions: an analysis of Meta's Segment Anything Model 2 and factors affecting learning free segmentation.

Authors

Khazanchi R,Govind S,Jain R,Du R,Dahdaleh NS,Ahuja CS,El Tecle N

Abstract

Accurate vertebral segmentation is an important step in imaging analysis pipelines for diagnosis and subsequent treatment of spinal metastases. Segmenting these metastases is especially challenging given their radiological heterogeneity. Conventional approaches for segmenting vertebrae have included manual review or deep learning; however, manual review is time-intensive with interrater reliability issues, while deep learning requires large datasets to build. The rise of generative AI, notably tools such as Meta's Segment Anything Model 2 (SAM 2), holds promise in its ability to rapidly generate segmentations of any image without pretraining (zero-shot). The authors of this study aimed to assess the ability of SAM 2 to segment vertebrae with metastases. A publicly available set of spinal CT scans from The Cancer Imaging Archive was used, which included patient sex, BMI, vertebral locations, types of metastatic lesion (lytic, blastic, or mixed), and primary cancer type. Ground-truth segmentations for each vertebra, derived by neuroradiologists, were further extracted from the dataset. SAM 2 then produced segmentations for each vertebral slice without any training data, all of which were compared to gold standard segmentations using the Dice similarity coefficient (DSC). Relative performance differences were assessed across clinical subgroups using standard statistical techniques. Imaging data were extracted for 55 patients and 779 unique thoracolumbar vertebrae, 167 of which had metastatic tumor involvement. Across these vertebrae, SAM 2 had a mean volumetric DSC of 0.833 ± 0.053. SAM 2 performed significantly worse on thoracic vertebrae relative to lumbar vertebrae, female patients relative to male patients, and obese patients relative to non-obese patients. These results demonstrate that general-purpose segmentation models like SAM 2 can provide reasonable vertebral segmentation accuracy with no pretraining, with efficacy comparable to previously published trained models. Future research should include optimizations of spine segmentation models for vertebral location and patient body habitus, as well as for variations in imaging quality approaches.

Topics

Spinal NeoplasmsDeep LearningSpineJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.