Clinician Perspectives of a Magnetic Resonance Imaging-Based 3D Volumetric Analysis Tool for Neurofibromatosis Type 2-Related Schwannomatosis: Qualitative Pilot Study.

Authors

Desroches ST,Huang A,Ghankot R,Tommasini SM,Wiznia DH,Buono FD

Affiliations (3)

  • Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States.
  • Department of Mechanical Engineering, Yale University, New Haven, CT, United States.
  • Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06510, United States, 1 2032920980.

Abstract

Accurate monitoring of tumor progression is crucial for optimizing outcomes in neurofibromatosis type 2-related schwannomatosis. Standard 2D linear analysis on magnetic resonance imaging is less accurate than 3D volumetric analysis, but since 3D volumetric analysis is time-consuming, it is not widely used. To shorten the time required for 3D volumetric analysis, our lab has been developing an automated artificial intelligence-driven 3D volumetric tool. The objective of the study was to survey and interview clinicians treating neurofibromatosis type 2-related schwannomatosis to understand their views on current 2D analysis and to gather insights for the design of an artificial intelligence-driven 3D volumetric analysis tool. Interviews examined for the following themes: (1) shortcomings of the currently used linear analysis, (2) utility of 3D visualizations, (3) features of an interactive 3D modeling software, and (4) lack of a gold standard to assess the accuracy of 3D volumetric analysis. A Likert scale questionnaire was used to survey clinicians' levels of agreement with 25 statements related to 2D and 3D tumor analyses. A total of 14 clinicians completed a survey, and 12 clinicians were interviewed. Specialties ranged across neurosurgery, neuroradiology, neurology, oncology, and pediatrics. Overall, clinicians expressed concerns with current linear techniques, with clinicians agreeing that linear measurements can be variable with the possibility of two different clinicians calculating 2 different tumor sizes (mean 4.64, SD 0.49) and that volumetric measurements would be more helpful for determining clearer thresholds of tumor growth (mean 4.50, SD 0.52). For statements discussing the capabilities of a 3D volumetric analysis and visualization software, clinicians expressed strong interest in being able to visualize tumors with respect to critical brain structures (mean 4.36, SD 0.74) and in forecasting tumor growth (mean 4.77, SD 0.44). Clinicians were overall in favor of the adoption of 3D volumetric analysis techniques for measuring vestibular schwannoma tumors but expressed concerns regarding the novelty and inexperience surrounding these techniques. However, clinicians felt that the ability to visualize tumors with reference to critical structures, to overlay structures, to interact with 3D models, and to visualize areas of slow versus rapid growth in 3D would be valuable contributions to clinical practice. Overall, clinicians provided valuable insights for designing a 3D volumetric analysis tool for vestibular schwannoma tumor growth. These findings may also apply to other central nervous system tumors, offering broader utility in tumor growth assessments.

Topics

Magnetic Resonance ImagingImaging, Three-DimensionalNeurofibromatosesNeurilemmomaSkin NeoplasmsNeurofibromatosis 2Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.