Multimodal Deep Learning Approaches for Early Detection of Alzheimer's Disease: A Comprehensive Systematic Review of Image Processing Techniques.

Authors

Amine JM,Mourad M

Affiliations (1)

  • NOCCS Laboratory, National School of Engineers of Sousse (ENISO), University of Sousse, Sousse, Tunisia.

Abstract

Alzheimer's disease (AD) is the most common form of dementia, and it is important to diagnose the disease at an early stage to help people with the condition and their families. Recently, artificial intelligence, especially deep learning approaches applied to medical imaging, has shown potential in enhancing AD diagnosis. This comprehensive review investigates the current state of the art in multimodal deep learning for the early diagnosis of Alzheimer's disease using image processing. The research underpinning this review spanned several months. Numerous deep learning architectures are examined, including CNNs, transfer learning methods, and combined models that use different imaging modalities, such as structural MRI, functional MRI, and amyloid PET. The latest work on explainable AI (XAI) is also reviewed to improve the understandability of the models and identify the particular regions of the brain related to AD pathology. The results indicate that multimodal approaches generally outperform single-modality methods, and three-dimensional (volumetric) data provides a better form of representation compared to two-dimensional images. Current challenges are also discussed, including insufficient and/or poorly prepared datasets, computational expense, and the lack of integration with clinical practice. The findings highlight the potential of applying deep learning approaches for early AD diagnosis and for directing future research pathways. The integration of multimodal imaging with deep learning techniques presents an exciting direction for developing improved AD diagnostic tools. However, significant challenges remain in achieving accurate, reliable, and understandable clinical applications.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.