Back to all papers

Data fusion of medical imaging in neurological disorders.

Authors

Mirzaei G,Gupta A,Adeli H

Affiliations (2)

  • Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43302, USA.
  • Departments of Biomedical Informatics and Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.

Abstract

Medical imaging plays a crucial role in the accurate diagnosis and prognosis of various medical conditions, with each modality offering unique and complementary insights into the body's structure and function. However, no single imaging technique can capture the full spectrum of necessary information. Data fusion has emerged as a powerful tool to integrate information from different perspectives, including multiple modalities, views, temporal sequences, and spatial scales. By combining data, fusion techniques provide a more comprehensive understanding, significantly enhancing the precision and reliability of clinical analyses. This paper presents an overview of data fusion approaches - covering multi-view, multi-modal, and multi-scale strategies - across imaging modalities such as MRI, CT, PET, SPECT, EEG, and MEG, with a particular emphasis on applications in neurological disorders. Furthermore, we highlight the latest advancements in data fusion methods and key studies published since 2016, illustrating the progress and growing impact of this interdisciplinary field.

Topics

Journal ArticleReview

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.