Back to all papers

Comparison of imaging-based bone marrow dosimetry methodologies and their dose-effect relationships in [<sup>177</sup>Lu]Lu-PSMA-617 RLT including a novel method with active marrow localization.

December 4, 2025pubmed logopapers

Authors

Peterson AB,Wilderman SJ,Blakkisrud J,Wong KK,Frey KA,Dewaraja YK

Affiliations (5)

  • Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA. [email protected].
  • Department of Radiation Oncology, Wayne State University, Detroit, MI, USA. [email protected].
  • Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA.
  • Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.

Abstract

Establishing accurate methods for red marrow (RM) dosimetry is an important step toward patient-specific treatment guidance. We compared image-based dosimetry methods and investigated their role in predicting changes in blood counts following [<sup>177</sup>Lu]Lu-PSMA-617 radioligand therapy (<sup>177</sup>Lu RLT). Four image-based dosimetry methodologies were applied to patients who received 2-bed position serial <sup>177</sup>Lu SPECT/CT after cycle 1 of RLT, with segmentation of all spongiosa within the field-of-view performed on CT using deep learning tools. Cycle 1 RM absorbed doses (ADs) were estimated with: 1) the time-integrated activity (TIA) in segmented spongiosa coupled with MIRD-based S-values (MIRD); 2) the TIA concentration in the segmented aorta (a surrogate for blood-based dosimetry) coupled with MIRD-based S values (MIRD<sub>aorta</sub>); 3) the voxel-level TIA map coupled with an in-house Monte Carlo (MC) dosimetry code that incorporated a micro-scale modeling of the spongiosa (MC); and 4) a novel method that utilizes [<sup>68</sup>Ga]Ga-PSMA-11 PET/CT and [<sup>99m</sup>Tc]Tc-sulfur colloid (SC) SPECT/CT for tumor and marrow localization coupled with the above MC code, modified to allow tumor infiltration of the spongiosa (MC<sub>SC+PET</sub>). Spearman rank correlation of AD from the four methods with changes in select blood counts was evaluated. Imaging data was available for 20 patients for methods 1-3, while SC images were available for 12 patients for method 4. Cycle 1 AD to the FOV RM was, on average, 1.9 Gy (range: 0.1-8.0 Gy) for MIRD, 0.08 Gy (range: 0.01-0.27 Gy) for MIRD<sub>aorta</sub>, 2.5 Gy (range: 0.1-10.3 Gy) for MC, and 1.6 Gy (range: 0.1-4.6 Gy) for MC<sub>SC+PET</sub>. The ADs from MIRD<sub>aorta</sub> were not concordant with MIRD, MC, or MC<sub>SC+PET</sub> (|CCC|< 0.01) and were generally underestimates. For 3 patients with high bone tumor burden, MC<sub>SC+PET</sub> gave lower average AD than MIRD (39%) and MC (53%), potentially due to more accurate localization of marrow and tumor. Cycle 1 RM ADs were correlated with relative change in blood counts at 6-weeks post-cycle 1 with significant correlation observed for neutrophils with MIRD, MC, and MC<sub>SC+PET</sub> with Spearman rank correlations ranging from r = - 0.61 to r = - 0.88 (P < 0.01). Correlation with white blood cells at 6-months was also significant with r = - 0.80 (P < 0.01) for these three methods. MIRD<sub>aorta</sub> did not correlate with any acute or chronic changes in blood counts. The RM AD estimates from the blood-based surrogate were not concordant with the other image-based calculations and did not correlate with changes in blood values. Including patient-specific tumor and marrow distribution information resulted in lower AD for patients with a high bone metastatic burden. These findings have implications for managing hematological toxicities in <sup>177</sup>Lu RLT, especially if dosimetry-guided treatment planning is considered.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.