Deep learning reconstruction improves computer-aided pulmonary nodule detection and measurement accuracy for ultra-low-dose chest CT.

Authors

Wang J,Zhu Z,Pan Z,Tan W,Han W,Zhou Z,Hu G,Ma Z,Xu Y,Ying Z,Sui X,Jin Z,Song L,Song W

Affiliations (8)

  • Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
  • 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Deepwise AI Lab, Beijing Deepwise & League of PhD Technology Co.Ltd, Beijing, China.
  • Department of Epidemiology and Health Statistics, Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Canon Medical System (China), No.3, Xinyuan South Road, Chaoyang District, Beijing, China.
  • Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China. [email protected].
  • Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China. [email protected].

Abstract

To compare the image quality and pulmonary nodule detectability and measurement accuracy between deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) of chest ultra-low-dose CT (ULDCT). Participants who underwent chest standard-dose CT (SDCT) followed by ULDCT from October 2020 to January 2022 were prospectively included. ULDCT images reconstructed with HIR and DLR were compared with SDCT images to evaluate image quality, nodule detection rate, and measurement accuracy using a commercially available deep learning-based nodule evaluation system. Wilcoxon signed-rank test was used to evaluate the percentage errors of nodule size and nodule volume between HIR and DLR images. Eighty-four participants (54 ± 13 years; 26 men) were finally enrolled. The effective radiation doses of ULDCT and SDCT were 0.16 ± 0.02 mSv and 1.77 ± 0.67 mSv, respectively (P < 0.001). The mean ± standard deviation of the lung tissue noises was 61.4 ± 3.0 HU for SDCT, 61.5 ± 2.8 HU and 55.1 ± 3.4 HU for ULDCT reconstructed with HIR-Strong setting (HIR-Str) and DLR-Strong setting (DLR-Str), respectively (P < 0.001). A total of 535 nodules were detected. The nodule detection rates of ULDCT HIR-Str and ULDCT DLR-Str were 74.0% and 83.4%, respectively (P < 0.001). The absolute percentage error in nodule volume from that of SDCT was 19.5% in ULDCT HIR-Str versus 17.9% in ULDCT DLR-Str (P < 0.001). Compared with HIR, DLR reduced image noise, increased nodule detection rate, and improved measurement accuracy of nodule volume at chest ULDCT. Not applicable.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.