TRI-PLAN: A deep learning-based automated assessment framework for right heart assessment in transcatheter tricuspid valve replacement planning.

Authors

Yang T,Wang Y,Zhu G,Liu W,Cao J,Liu Y,Lu F,Yang J

Affiliations (5)

  • School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China.
  • Department of Cardiac Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
  • School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China. Electronic address: [email protected].
  • Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.
  • Department of Cardiac Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China. Electronic address: [email protected].

Abstract

Efficient and accurate preoperative assessment of the right-sided heart structural complex (RSHSc) is crucial for planning transcatheter tricuspid valve replacement (TTVR). However, current manual methods remain time-consuming and inconsistent. To address this unmet clinical need, this study aimed to develop and validate TRI-PLAN, the first fully automated, deep learning (DL)-based framework for pre-TTVR assessment. A total of 140 preprocedural computed tomography angiography (CTA) scans (63,962 slices) from patients with severe tricuspid regurgitation (TR) at two high-volume cardiac centers in China were retrospectively included. The patients were divided into a training cohort (n = 100), an internal validation cohort (n = 20), and an external validation cohort (n = 20). TRI-PLAN was developed by a dual-stage right heart assessment network (DRA-Net) to segment the RSHSc and localize the tricuspid annulus (TA), followed by automated measurement of key anatomical parameters and right ventricular ejection fraction (RVEF). Performance was comprehensively evaluated in terms of accuracy, interobserver benchmark comparison, clinical usability, and workflow efficiency. TRI-PLAN achieved expert-level segmentation accuracy (volumetric Dice 0.952/0.955; surface Dice 0.934/0.940), precise localization (standard deviation 1.18/1.14 mm), excellent measurement agreement (ICC 0.984/0.979) and reliable RVEF evaluation (R = 0.97, bias<5 %) across internal and external cohorts. In addition, TRI-PLAN obtained a direct acceptance rate of 80 % and reduced total assessment time from 30 min manually to under 2 min (>95 % time saving). TRI-PLAN provides an accurate, efficient, and clinically applicable solution for pre-TTVR assessment, with strong potential to streamline TTVR planning and enhance procedural outcomes.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.