A machine learning approach for personalized breast radiation dosimetry in CT: Integrating radiomics and deep neural networks.

Authors

Tzanis E,Stratakis J,Damilakis J

Affiliations (2)

  • Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete, Greece. Electronic address: [email protected].
  • Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete, Greece.

Abstract

To develop a machine learning-based workflow for patient-specific breast radiation dosimetry in CT. Two hundred eighty-six chest CT examinations, with corresponding right and left breast contours, were retrospectively collected from the radiotherapy department at our institution to develop and validate breast segmentation U-Nets. Additionally, Monte Carlo simulations were performed for each CT scan to determine radiation doses to the breasts. The derived breast doses, along with predictors such as X-ray tube current and radiomic features, were then used to train deep neural networks (DNNs) for breast dose prediction. The breast segmentation models achieved a mean dice similarity coefficient of 0.92, with precision and sensitivity scores above 0.90 for both breasts, indicating high segmentation accuracy. The DNNs demonstrated close alignment with ground truth values, with mean predicted doses of 5.05 ± 0.50 mGy for the right breast and 5.06 ± 0.55 mGy for the left breast, compared to ground truth values of 5.03 ± 0.57 mGy and 5.02 ± 0.61 mGy, respectively. The mean absolute percentage errors were 4.01 % (range: 3.90 %-4.12 %) for the right breast and 4.82 % (range: 4.56 %-5.11 %) for the left breast. The mean inference time was 30.2 ± 4.3 s. Statistical analysis showed no significant differences between predicted and actual doses (p ≥ 0.07). This study presents an automated, machine learning-based workflow for breast radiation dosimetry in CT, integrating segmentation and dose prediction models. The models and code are available at: https://github.com/eltzanis/ML-based-Breast-Radiation-Dosimetry-in-CT.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.