Towards a comprehensive characterization of arteries and veins in retinal imaging.

Authors

Andreini P,Bonechi S

Affiliations (2)

  • Department of Information Engineering and Mathematics (DIISM), University of Siena, Via Roma 56, I-53100, Siena, Italy.
  • Department of Information Engineering and Mathematics (DIISM), University of Siena, Via Roma 56, I-53100, Siena, Italy. Electronic address: [email protected].

Abstract

Retinal fundus imaging is crucial for diagnosing and monitoring eye diseases, which are often linked to systemic health conditions such as diabetes and hypertension. Current deep learning techniques often narrowly focus on segmenting retinal blood vessels, lacking a more comprehensive analysis and characterization of the retinal vascular system. This study fills this gap by proposing a novel, integrated approach that leverages multiple stages to accurately determine vessel paths and extract informative features from them. The segmentation of veins and arteries, achieved through a deep semantic segmentation network, is used by a newly designed algorithm to reconstruct individual vessel paths. The reconstruction process begins at the optic disc, identified by a localization network, and uses a recurrent neural network to predict the vessel paths at various junctions. The different stages of the proposed approach are validated both qualitatively and quantitatively, demonstrating robust performance. The proposed approach enables the extraction of critical features at the individual vessel level, such as vessel tortuosity and diameter. This work lays the foundation for a comprehensive retinal image evaluation, going beyond isolated tasks like vessel segmentation, with significant potential for clinical diagnosis.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.