Meta-analysis of AI-based pulmonary embolism detection: How reliable are deep learning models?

Authors

Lanza E,Ammirabile A,Francone M

Affiliations (2)

  • Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy; IRCCS Humanitas Research Hospital, Radiology Department, via Manzoni 56, Rozzano, 20089, Milan, Italy. Electronic address: [email protected].
  • Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy; IRCCS Humanitas Research Hospital, Radiology Department, via Manzoni 56, Rozzano, 20089, Milan, Italy.

Abstract

Deep learning (DL)-based methods show promise in detecting pulmonary embolism (PE) on CT pulmonary angiography (CTPA), potentially improving diagnostic accuracy and workflow efficiency. This meta-analysis aimed to (1) determine pooled performance estimates of DL algorithms for PE detection; and (2) compare the diagnostic efficacy of convolutional neural network (CNN)- versus U-Net-based architectures. Following PRISMA guidelines, we searched PubMed and EMBASE through April 15, 2025 for English-language studies (2010-2025) reporting DL models for PE detection with extractable 2 × 2 data or performance metrics. True/false positives and negatives were reconstructed when necessary under an assumed 50 % PE prevalence (with 0.5 continuity correction). We approximated AUROC as the mean of sensitivity and specificity if not directly reported. Sensitivity, specificity, accuracy, PPV and NPV were pooled using a DerSimonian-Laird random-effects model with Freeman-Tukey transformation; AUROC values were combined via a fixed-effect inverse-variance approach. Heterogeneity was assessed by Cochran's Q and I<sup>2</sup>. Subgroup analyses contrasted CNN versus U-Net models. Twenty-four studies (n = 22,984 patients) met inclusion criteria. Pooled estimates were: AUROC 0.895 (95 % CI: 0.874-0.917), sensitivity 0.894 (0.856-0.923), specificity 0.871 (0.831-0.903), accuracy 0.857 (0.833-0.882), PPV 0.832 (0.794-0.869) and NPV 0.902 (0.874-0.929). Between-study heterogeneity was high (I<sup>2</sup> ≈ 97 % for sensitivity/specificity). U-Net models exhibited higher sensitivity (0.899 vs 0.893) and CNN models higher specificity (0.926 vs 0.900); subgroup Q-tests confirmed significant differences for both sensitivity (p = 0.0002) and specificity (p < 0.001). DL algorithms demonstrate high diagnostic accuracy for PE detection on CTPA, with complementary strengths: U-Net architectures excel in true-positive identification, whereas CNNs yield fewer false positives. However, marked heterogeneity underscores the need for standardized, prospective validation before routine clinical implementation.

Topics

Journal ArticleReview

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.