Meta-analysis of AI-based pulmonary embolism detection: How reliable are deep learning models?
Authors
Affiliations (2)
Affiliations (2)
- Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy; IRCCS Humanitas Research Hospital, Radiology Department, via Manzoni 56, Rozzano, 20089, Milan, Italy. Electronic address: [email protected].
- Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy; IRCCS Humanitas Research Hospital, Radiology Department, via Manzoni 56, Rozzano, 20089, Milan, Italy.
Abstract
Deep learning (DL)-based methods show promise in detecting pulmonary embolism (PE) on CT pulmonary angiography (CTPA), potentially improving diagnostic accuracy and workflow efficiency. This meta-analysis aimed to (1) determine pooled performance estimates of DL algorithms for PE detection; and (2) compare the diagnostic efficacy of convolutional neural network (CNN)- versus U-Net-based architectures. Following PRISMA guidelines, we searched PubMed and EMBASE through April 15, 2025 for English-language studies (2010-2025) reporting DL models for PE detection with extractable 2 × 2 data or performance metrics. True/false positives and negatives were reconstructed when necessary under an assumed 50 % PE prevalence (with 0.5 continuity correction). We approximated AUROC as the mean of sensitivity and specificity if not directly reported. Sensitivity, specificity, accuracy, PPV and NPV were pooled using a DerSimonian-Laird random-effects model with Freeman-Tukey transformation; AUROC values were combined via a fixed-effect inverse-variance approach. Heterogeneity was assessed by Cochran's Q and I<sup>2</sup>. Subgroup analyses contrasted CNN versus U-Net models. Twenty-four studies (n = 22,984 patients) met inclusion criteria. Pooled estimates were: AUROC 0.895 (95 % CI: 0.874-0.917), sensitivity 0.894 (0.856-0.923), specificity 0.871 (0.831-0.903), accuracy 0.857 (0.833-0.882), PPV 0.832 (0.794-0.869) and NPV 0.902 (0.874-0.929). Between-study heterogeneity was high (I<sup>2</sup> ≈ 97 % for sensitivity/specificity). U-Net models exhibited higher sensitivity (0.899 vs 0.893) and CNN models higher specificity (0.926 vs 0.900); subgroup Q-tests confirmed significant differences for both sensitivity (p = 0.0002) and specificity (p < 0.001). DL algorithms demonstrate high diagnostic accuracy for PE detection on CTPA, with complementary strengths: U-Net architectures excel in true-positive identification, whereas CNNs yield fewer false positives. However, marked heterogeneity underscores the need for standardized, prospective validation before routine clinical implementation.