ViTU-net: A hybrid deep learning model with patch-based LSB approach for medical image watermarking and authentication using a hybrid metaheuristic algorithm.

Authors

Nanammal V,Rajalakshmi S,Remya V,Ranjith S

Affiliations (3)

  • Department of Electronics and Communication Engineering, Jeppiaar Engineering College, Chennai, India. Electronic address: [email protected].
  • Department of Electronics and Communication Engineering, Sri Sairam Engineering College, Chennai, India.
  • Department of Electronics and Communication Engineering, Jeppiaar Engineering College, Chennai, India.

Abstract

In modern healthcare, telemedicine, health records, and AI-driven diagnostics depend on medical image watermarking to secure chest X-rays for pneumonia diagnosis, ensuring data integrity, confidentiality, and authenticity. A 2024 study found over 70 % of healthcare institutions faced medical image data breaches. Yet, current methods falter in imperceptibility, robustness against attacks, and deployment efficiency. ViTU-Net integrates cutting-edge techniques to address these multifaceted challenges in medical image security and analysis. The model's core component, the Vision Transformer (ViT) encoder, efficiently captures global dependencies and spatial information, while the U-Net decoder enhances image reconstruction, with both components leveraging the Adaptive Hierarchical Spatial Attention (AHSA) module for improved spatial processing. Additionally, the patch-based LSB embedding mechanism ensures focused embedding of reversible fragile watermarks within each patch of the segmented non-diagnostic region (RONI), guided dynamically by adaptive masks derived from the attention mechanism, minimizing impact on diagnostic accuracy while maximizing precision and ensuring optimal utilization of spatial information. The hybrid meta-heuristic optimization algorithm, TuniBee Fusion, dynamically optimizes watermarking parameters, striking a balance between exploration and exploitation, thereby enhancing watermarking efficiency and robustness. The incorporation of advanced cryptographic techniques, including SHA-512 hashing and AES encryption, fortifies the model's security, ensuring the authenticity and confidentiality of watermarked medical images. A PSNR value of 60.7 dB, along with an NCC value of 0.9999 and an SSIM value of 1.00, underscores its effectiveness in preserving image quality, security, and diagnostic accuracy. Robustness analysis against a spectrum of attacks validates ViTU-Net's resilience in real-world scenarios.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.