A Dual-stage Deep Learning Framework for Breast Ultrasound Image Segmentation and Classification.
Authors
Affiliations (2)
Affiliations (2)
- Department of Mathematics and Computer Science, University of Calabria, Rende, 87036, CS, Italy. [email protected].
- Department of Mathematics and Computer Science, University of Calabria, Rende, 87036, CS, Italy.
Abstract
Deep Learning methods have become a powerful tool in medical imaging, with great potential to improve diagnostic accuracy and support early disease detection. This is especially critical for breast cancer, one of the most common cancers among women, where early detection of abnormal tissue is crucial to improving survival rates. In this paper, we explore the application of Deep Learning techniques to segment and classify breast masses as malignant or benign using ultrasound images, aiming to support breast cancer diagnosis. We propose a modular dual-stage pipeline that first segments suspicious regions and then classifies them into benign or malignant categories. The framework is designed to flexibly integrate different backbone architectures, allowing adaptation to task- or dataset-specific requirements. Experimental results show that, within this pipeline, DeepLabV3+ with a ResNet34 encoder provided the most accurate segmentation, while lightweight classifiers such as MobileNetV3-Small and EfficientNet-B0 yielded the best classification performance. Moreover, an ablation study was conducted to tune parameters and determine their optimal configuration. Finally, our approach was tested on two breast ultrasound datasets, and the results show promising improvements in diagnostic accuracy, demonstrating the potential of our method to enhance early breast cancer detection.