Multi-Organ metabolic profiling with [<sup>18</sup>F]F-FDG PET/CT predicts pathological response to neoadjuvant immunochemotherapy in resectable NSCLC.

Authors

Ma Q,Yang J,Guo X,Mu W,Tang Y,Li J,Hu S

Affiliations (5)

  • Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China.
  • Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China. [email protected].
  • Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, Hunan Province, 410008, P.R. China. [email protected].
  • National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan Province, P.R. China. [email protected].
  • Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan Province, P.R. China. [email protected].

Abstract

To develop and validate a novel nomogram combining multi-organ PET metabolic metrics for major pathological response (MPR) prediction in resectable non-small cell lung cancer (rNSCLC) patients receiving neoadjuvant immunochemotherapy. This retrospective cohort included rNSCLC patients who underwent baseline [<sup>18</sup>F]F-FDG PET/CT prior to neoadjuvant immunochemotherapy at Xiangya Hospital from April 2020 to April 2024. Patients were randomly stratified into training (70%) and validation (30%) cohorts. Using deep learning-based automated segmentation, we quantified metabolic parameters (SUV<sub>mean</sub>, SUV<sub>max</sub>, SUV<sub>peak</sub>, MTV, TLG) and their ratio to liver metabolic parameters for primary tumors and nine key organs. Feature selection employed a tripartite approach: univariate analysis, LASSO regression, and random forest optimization. The final multivariable model was translated into a clinically interpretable nomogram, with validation assessing discrimination, calibration, and clinical utility. Among 115 patients (MPR rate: 63.5%, n = 73), five metabolic parameters emerged as predictive biomarkers for MPR: Spleen_SUV<sub>mean</sub>, Colon_SUV<sub>peak</sub>, Spine_TLG, Lesion_TLG, and Spleen-to-Liver SUV<sub>max</sub> ratio. The nomogram demonstrated consistent performance across cohorts (training AUC = 0.78 [95%CI 0.67-0.88]; validation AUC = 0.78 [95%CI 0.62-0.94]), with robust calibration and enhanced clinical net benefit on decision curve analysis. Compared to tumor-only parameters, the multi-organ model showed higher specificity (100% vs. 92%) and positive predictive value (100% vs. 90%) in the validation set, maintaining 76% overall accuracy. This first-reported multi-organ metabolic nomogram noninvasively predicts MPR in rNSCLC patients receiving neoadjuvant immunochemotherapy, outperforming conventional tumor-centric approaches. By quantifying systemic host-tumor metabolic crosstalk, this tool could help guide personalized therapeutic decisions while mitigating treatment-related risks, representing a paradigm shift towards precision immuno-oncology management.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.