
Moffitt Cancer Center researchers created machine learning models that use patient-reported outcomes and wearable data to predict urgent care visits for non-small cell lung cancer patients.
Key Details
- 1Machine learning models incorporated wearable sensor data (Fitbit) and quality-of-life surveys from 58 non–small cell lung cancer patients.
- 2Models using patient-reported and wearable data outperformed those using only clinical/demographic data in predicting urgent care visits during systemic therapy.
- 3Researchers employed explainable Bayesian Networks, revealing how symptom, sleep, and lab data affect risk.
- 4Study highlights potential to proactively intervene and prevent hospitalizations due to treatment complications.
- 5This was a single-center study with a modest sample; larger validation is planned.
Why It Matters

Source
EurekAlert
Related News

AI Tool from UCLA Targets Undiagnosed Alzheimer's and Diagnostic Disparity
UCLA researchers developed an AI model using EHR data to better detect undiagnosed Alzheimer's disease, especially in underrepresented groups.

AI Multimodal Models Improve Breast Cancer Recurrence Risk Prediction
Initial results from an ECOG-ACRIN and Caris Life Sciences collaboration show AI-driven multimodal models can more accurately predict recurrence risk in early-stage breast cancer.

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.