
Moffitt Cancer Center researchers created machine learning models that use patient-reported outcomes and wearable data to predict urgent care visits for non-small cell lung cancer patients.
Key Details
- 1Machine learning models incorporated wearable sensor data (Fitbit) and quality-of-life surveys from 58 non–small cell lung cancer patients.
- 2Models using patient-reported and wearable data outperformed those using only clinical/demographic data in predicting urgent care visits during systemic therapy.
- 3Researchers employed explainable Bayesian Networks, revealing how symptom, sleep, and lab data affect risk.
- 4Study highlights potential to proactively intervene and prevent hospitalizations due to treatment complications.
- 5This was a single-center study with a modest sample; larger validation is planned.
Why It Matters

Source
EurekAlert
Related News

AI Decision Support Proves Helpful, Yet Contentious, in Emergency Medicine
Researchers found that AI-driven decision support improved correct decision rates among emergency care doctors, but physician acceptance of AI recommendations remains split.

Machine Learning and 3D Imaging Reveal Magma Dynamics Beneath Santorini
Researchers used machine learning and 3D imaging to map the cause of Santorini's 2025 seismic unrest, revealing dynamic magma dike activity.

Equity and Bias Concerns Raised for AI in Neurological Imaging
A new report urges equitable development and oversight of AI in neurological imaging to avoid worsening healthcare disparities.