A new report urges equitable development and oversight of AI in neurological imaging to avoid worsening healthcare disparities.
Key Details
- 1UCLA Health and collaborators published a Neurology journal report assessing AI's dual impact in neurological care.
- 2AI already aids doctors in classifying brain tumors and stroke imaging for faster decisions.
- 3Researchers highlight risks for bias due to underrepresentation of certain groups in datasets.
- 4Three guiding principles recommended: diverse stakeholder input, AI education for neurologists, and strong independent governance.
- 5The aim is for AI to advance equity, particularly in resource-limited and underrepresented communities.
- 6The literature review involves experts from healthcare, FDA, and AI industry.
Why It Matters

Source
EurekAlert
Related News

AI-Driven CT Imaging Predicts Cardiac Events in Large UK Cohort
An AI tool analyzing CCTA images can predict future cardiovascular events and death in patients with suspected stable coronary artery disease.

AI Multimodal Models Improve Breast Cancer Recurrence Risk Prediction
Initial results from an ECOG-ACRIN and Caris Life Sciences collaboration show AI-driven multimodal models can more accurately predict recurrence risk in early-stage breast cancer.

AI Tool from UCLA Targets Undiagnosed Alzheimer's and Diagnostic Disparity
UCLA researchers developed an AI model using EHR data to better detect undiagnosed Alzheimer's disease, especially in underrepresented groups.