Researchers found that AI-driven decision support improved correct decision rates among emergency care doctors, but physician acceptance of AI recommendations remains split.
Key Details
- 1Study tested AI-enabled decision-support display ('DecAide') during pediatric trauma simulations with 35 ER care providers from six health systems.
- 2In scenarios with both AI information synthesis and recommendations, correct decisions were made 64.4% of the time, versus 56.3% with synthesis only and 55.8% with no AI support.
- 3Some clinicians accepted AI recommendations only after making their own decisions, while others distrusted or ignored the AI's output.
- 4AI did not slow down decision making; time to decision remained consistent across scenarios.
- 5Concerns about AI recommendations related to physician autonomy, potential bias, and a lack of transparency regarding the AI's reasoning.
- 6Findings were presented at the ACM Conference on Computer-Supported Cooperative Work & Social Computing, suggesting more research and clarity in AI adoption for emergency care.
Why It Matters

Source
EurekAlert
Related News

Machine Learning and 3D Imaging Reveal Magma Dynamics Beneath Santorini
Researchers used machine learning and 3D imaging to map the cause of Santorini's 2025 seismic unrest, revealing dynamic magma dike activity.

Equity and Bias Concerns Raised for AI in Neurological Imaging
A new report urges equitable development and oversight of AI in neurological imaging to avoid worsening healthcare disparities.

Advances in Multimodal Imaging and AI for Radiation-Induced Brain Injury
A state-of-the-art review highlights the use of multimodal imaging and AI to improve diagnosis and management of radiation-induced brain injury (RIBI).