
A new generative AI model predicts the risk and timing of over 1,000 diseases using large-scale health record data from the UK and Denmark.
Key Details
- 1The model was trained on anonymised data from 400,000 UK Biobank participants and validated on 1.9 million Danish registry patients.
- 2It leverages generative transformer techniques similar to those in large language models to process health event sequences.
- 3Excels at forecasting diseases with clear progression patterns (e.g., heart attacks, cancer); less effective for variable conditions.
- 4Produces probabilistic, population-level risk estimates rather than individual certainties; shorter-term forecasts are more reliable.
- 5Underrepresents childhood/adolescent events and some ethnic groups due to training data limitations.
- 6Not yet ready for clinical use, but helps study disease progression and simulate outcomes for research.
Why It Matters

Source
EurekAlert
Related News

ML and Multimodal Imaging Power Cerebral Blood Flow Monitoring for Spaceflight
Researchers developed a machine learning model that uses ultrasound and MRI data to predict cerebral blood flow in simulated microgravity for astronaut health.

Deep Learning Model Predicts Language Outcomes After Cochlear Implants Using MRI
AI model using deep transfer learning accurately predicts spoken language outcomes in deaf children after cochlear implantation based on pre-implantation brain MRI scans.

LSTM Deep Learning Enhances Optical Sensing for Biochemical and Medical Applications
Researchers have developed an LSTM-driven interferometric sensing system that achieves both high sensitivity and wide measurement range, overcoming previous trade-offs in optical sensing.