An AI algorithm uses ECG data to accurately predict risk of future regurgitant heart valve diseases before symptoms or ultrasound changes appear.
Key Details
- 1International team trained AI on nearly 1 million ECG and echocardiogram records from 400,000+ patients in China.
- 2The model predicted risk of mitral, tricuspid, or aortic valvular regurgitation within years, with 69-79% accuracy.
- 3High-risk patients identified by AI were up to 10 times more likely to develop valve disease.
- 4Validation was conducted on 34,000+ US patients, supporting generalizability across populations.
- 5Trials with the NHS are scheduled for late 2025 to evaluate real-world performance.
- 6Research funded by British Heart Foundation, published in European Heart Journal.
Why It Matters
This research demonstrates how AI can leverage routinely acquired ECGs to flag patients at high risk for heart valve disease before traditional imaging reveals abnormalities, potentially transforming screening and management. It highlights the potential of integrating imaging and non-imaging clinical data in AI models to enable earlier and more proactive cardiac care.

Source
EurekAlert
Related News

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.

•EurekAlert
AI-Based CT Analysis Predicts Outcomes in Fibrotic Lung Disease
AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.

•EurekAlert
AI and Multiphoton Microscopy Achieve 96% Accuracy in Pancreatic Tumor Detection
University of Arizona researchers combined label-free multiphoton microscopy with neural networks to accurately classify pancreatic neuroendocrine neoplasms in tissue samples.