An AI algorithm uses ECG data to accurately predict risk of future regurgitant heart valve diseases before symptoms or ultrasound changes appear.
Key Details
- 1International team trained AI on nearly 1 million ECG and echocardiogram records from 400,000+ patients in China.
- 2The model predicted risk of mitral, tricuspid, or aortic valvular regurgitation within years, with 69-79% accuracy.
- 3High-risk patients identified by AI were up to 10 times more likely to develop valve disease.
- 4Validation was conducted on 34,000+ US patients, supporting generalizability across populations.
- 5Trials with the NHS are scheduled for late 2025 to evaluate real-world performance.
- 6Research funded by British Heart Foundation, published in European Heart Journal.
Why It Matters

Source
EurekAlert
Related News

ML and Multimodal Imaging Power Cerebral Blood Flow Monitoring for Spaceflight
Researchers developed a machine learning model that uses ultrasound and MRI data to predict cerebral blood flow in simulated microgravity for astronaut health.

Deep Learning Model Predicts Language Outcomes After Cochlear Implants Using MRI
AI model using deep transfer learning accurately predicts spoken language outcomes in deaf children after cochlear implantation based on pre-implantation brain MRI scans.

LSTM Deep Learning Enhances Optical Sensing for Biochemical and Medical Applications
Researchers have developed an LSTM-driven interferometric sensing system that achieves both high sensitivity and wide measurement range, overcoming previous trade-offs in optical sensing.