Sort by:
Page 1 of 12 results

Whole-body CT-to-PET synthesis using a customized transformer-enhanced GAN.

Xu B, Nie Z, He J, Li A, Wu T

pubmed logopapersMay 14 2025
Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET-CT) is a multi-modality medical imaging technique widely used for screening and diagnosis of lesions and tumors, in which, CT can provide detailed anatomical structures, while PET can show metabolic activities. Nevertheless, it has disadvantages such as long scanning time, high cost, and relatively high radiation doses.

Purpose: We propose a deep learning model for the whole-body CT-to-PET synthesis task, generating high-quality synthetic PET images that are comparable to real ones in both clinical relevance and diagnostic value.

Material: We collect 102 pairs of 3D CT and PET scans, which are sliced into 27,240 pairs of 2D CT and PET images ( training: 21,855 pairs, validation: 2,810, testing: 2,575 pairs).

Methods: We propose a Transformer-enhanced Generative Adversarial Network (GAN) for whole-body CT-to-PET synthesis task. The CPGAN model uses residual blocks and Fully Connected Transformer Residual (FCTR) blocks to capture both local features and global contextual information. A customized loss function incorporating structural consistency is designed to improve the quality of synthesized PET images.

Results: Both quantitative and qualitative evaluation results demonstrate effectiveness of the CPGAN model. The mean and standard variance of NRMSE,PSNR and SSIM values on test set are (16.90 ± 12.27) × 10-4, 28.71 ± 2.67 and 0.926 ± 0.033, respectively, outperforming other seven state-of-the-art models. Three radiologists independently and blindly evaluated and gave subjective scores to 100 randomly chosen PET images (50 real and 50 synthetic). By Wilcoxon signed rank test, there are no statistical differences between the synthetic PET images and the real ones.

Conclusions: Despite the inherent limitations of CT images to directly reflect biological information of metabolic tissues, CPGAN model effectively synthesizes satisfying PET images from CT scans, which has potential in reducing the reliance on actual PET-CT scans.

Generation of synthetic CT from MRI for MRI-based attenuation correction of brain PET images using radiomics and machine learning.

Hoseinipourasl A, Hossein-Zadeh GA, Sheikhzadeh P, Arabalibeik H, Alavijeh SK, Zaidi H, Ay MR

pubmed logopapersMay 12 2025
Accurate quantitative PET imaging in neurological studies requires proper attenuation correction. MRI-guided attenuation correction in PET/MRI remains challenging owing to the lack of direct relationship between MRI intensities and linear attenuation coefficients. This study aims at generating accurate patient-specific synthetic CT volumes, attenuation maps, and attenuation correction factor (ACF) sinograms with continuous values utilizing a combination of machine learning algorithms, image processing techniques, and voxel-based radiomics feature extraction approaches. Brain MR images of ten healthy volunteers were acquired using IR-pointwise encoding time reduction with radial acquisition (IR-PETRA) and VIBE-Dixon techniques. synthetic CT (SCT) images, attenuation maps, and attenuation correction factors (ACFs) were generated using the LightGBM, a fast and accurate machine learning algorithm, from the radiomics-based and image processing-based feature maps of MR images. Additionally, ultra-low-dose CT images of the same volunteers were acquired and served as the standard of reference for evaluation. The SCT images, attenuation maps, and ACF sinograms were assessed using qualitative and quantitative evaluation metrics and compared against their corresponding reference images, attenuation maps, and ACF sinograms. The voxel-wise and volume-wise comparison between synthetic and reference CT images yielded an average mean absolute error of 60.75 ± 8.8 HUs, an average structural similarity index of 0.88 ± 0.02, and an average peak signal-to-noise ratio of 32.83 ± 2.74 dB. Additionally, we compared MRI-based attenuation maps and ACF sinograms with their CT-based counterparts, revealing average normalized mean absolute errors of 1.48% and 1.33%, respectively. Quantitative assessments indicated higher correlations and similarities between LightGBM-synthesized CT and Reference CT images. Moreover, the cross-validation results showed the possibility of producing accurate SCT images, MRI-based attenuation maps, and ACF sinograms. This might spur the implementation of MRI-based attenuation correction on PET/MRI and dedicated brain PET scanners with lower computational time using CPU-based processors.
Page 1 of 12 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.