Sort by:
Page 1 of 21209 results
Next

Enhanced CoAtNet based hybrid deep learning architecture for automated tuberculosis detection in human chest X-rays.

Siddharth G, Ambekar A, Jayakumar N

pubmed logopapersSep 26 2025
Tuberculosis (TB) is a serious infectious disease that remains a global health challenge. While chest X-rays (CXRs) are widely used for TB detection, manual interpretation can be subjective and time-consuming. Automated classification of CXRs into TB and non-TB cases can significantly support healthcare professionals in timely and accurate diagnosis. This paper introduces a hybrid deep learning approach for classifying CXR images. The solution is based on the CoAtNet framework, which combines the strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The model is pre-trained on the large-scale ImageNet dataset to ensure robust generalization across diverse images. The evaluation is conducted on the IN-CXR tuberculosis dataset from ICMR-NIRT, which contains a comprehensive collection of CXR images of both normal and abnormal categories. The hybrid model achieves a binary classification accuracy of 86.39% and an ROC-AUC score of 93.79%, outperforming tested baseline models that rely exclusively on either CNNs or ViTs when trained on this dataset. Furthermore, the integration of Local Interpretable Model-agnostic Explanations (LIME) enhances the interpretability of the model's predictions. This combination of reliable performance and transparent, interpretable results strengthens the model's role in AI-driven medical imaging research. Code will be made available upon request.

A novel open-source ultrasound dataset with deep learning benchmarks for spinal cord injury localization and anatomical segmentation.

Kumar A, Kotkar K, Jiang K, Bhimreddy M, Davidar D, Weber-Levine C, Krishnan S, Kerensky MJ, Liang R, Leadingham KK, Routkevitch D, Hersh AM, Ashayeri K, Tyler B, Suk I, Son J, Theodore N, Thakor N, Manbachi A

pubmed logopapersSep 26 2025
While deep learning has catalyzed breakthroughs across numerous domains, its broader adoption in clinical settings is inhibited by the costly and time-intensive nature of data acquisition and annotation. To further facilitate medical machine learning, we present an ultrasound dataset of 10,223 brightness-mode (B-mode) images consisting of sagittal slices of porcine spinal cords (N = 25) before and after a contusion injury. We additionally benchmark the performance metrics of several state-of-the-art object detection algorithms to localize the site of injury and semantic segmentation models to label the anatomy for comparison and creation of task-specific architectures. Finally, we evaluate the zero-shot generalization capabilities of the segmentation models on human ultrasound spinal cord images to determine whether training on our porcine dataset is sufficient for accurately interpreting human data. Our results show that the YOLOv8 detection model outperforms all evaluated models for injury localization, achieving a mean Average Precision (mAP50-95) score of 0.606. Segmentation metrics indicate that the DeepLabv3 segmentation model achieves the highest accuracy on unseen porcine anatomy, with a Mean Dice score of 0.587, while SAMed achieves the highest mean Dice score generalizing to human anatomy (0.445). To the best of our knowledge, this is the largest annotated dataset of spinal cord ultrasound images made publicly available to researchers and medical professionals, as well as the first public report of object detection and segmentation architectures to assess anatomical markers in the spinal cord for methodology development and clinical applications.

An open deep learning-based framework and model for tooth instance segmentation in dental CBCT.

Zhou Y, Xu Y, Khalil B, Nalley A, Tarce M

pubmed logopapersSep 25 2025
Current dental CBCT segmentation tools often lack accuracy, accessibility, or comprehensive anatomical coverage. To address this, we constructed a densely annotated dental CBCT dataset and developed a deep learning model, OraSeg, for tooth-level instance segmentation, which is then deployed as a one-click tool and made freely accessible for non-commercial use. We established a standardized annotated dataset covering 35 key oral anatomical structures and employed UNetR as the backbone network, combining Swin Transformer and the spatial Mamba module for multi-scale residual feature fusion. The OralSeg model was designed and optimized for precise instance segmentation of dental CBCT images, and integrated into the 3D Slicer platform, providing a graphical user interface for one-click segmentation. OralSeg had a Dice similarity coefficient of 0.8316 ± 0.0305 on CBCT instance segmentation compared to SwinUNETR and 3D U-Net. The model significantly improves segmentation performance, especially in complex oral anatomical structures, such as apical areas, alveolar bone margins, and mandibular nerve canals. The OralSeg model presented in this study provides an effective solution for instance segmentation of dental CBCT images. The tool allows clinical dentists and researchers with no AI background to perform one-click segmentation, and may be applicable in various clinical and research contexts. OralSeg can offer researchers and clinicians a user-friendly tool for tooth-level instance segmentation, which may assist in clinical diagnosis, educational training, and research, and contribute to the broader adoption of digital dentistry in precision medicine.

PHASE: Personalized Head-based Automatic Simulation for Electromagnetic Properties in 7T MRI.

Lu Z, Liang H, Lu M, Martin D, Hardy BM, Dawant BM, Wang X, Yan X, Huo Y

pubmed logopapersSep 25 2025
Accurate and individualized human head models are becoming increasingly important for electromagnetic (EM) simulations. These simulations depend on precise anatomical representations to realistically model electric and magnetic field distributions, particularly when evaluating Specific Absorption Rate (SAR) within safety guidelines. State of the art simulations use the Virtual Population due to limited public resources and the impracticality of manually annotating patient data at scale. This paper introduces Personalized Head-based Automatic Simulation for EM properties (PHASE), an automated open-source toolbox that generates high-resolution, patient-specific head models for EM simulations using paired T1-weighted (T1w) magnetic resonance imaging (MRI) and computed tomography (CT) scans with 14 tissue labels. To evaluate the performance of PHASE models, we conduct semi-automated segmentation and EM simulations on 15 real human patients, serving as the gold standard reference. The PHASE model achieved comparable global SAR and localized SAR averaged over 10 grams of tissue (SAR-10 g), demonstrating its potential as a promising tool for generating large-scale human model datasets in the future. The code and models of PHASE toolbox have been made publicly available: https://github.com/hrlblab/PHASE.

Conditional Virtual Imaging for Few-Shot Vascular Image Segmentation.

He Y, Ge R, Tang H, Liu Y, Su M, Coatrieux JL, Shu H, Chen Y, He Y

pubmed logopapersSep 25 2025
In the field of medical image processing, vascular image segmentation plays a crucial role in clinical diagnosis, treatment planning, prognosis, and medical decision-making. Accurate and automated segmentation of vascular images can assist clinicians in understanding the vascular network structure, leading to more informed medical decisions. However, manual annotation of vascular images is time-consuming and challenging due to the fine and low-contrast vascular branches, especially in the medical imaging domain where annotation requires specialized knowledge and clinical expertise. Data-driven deep learning models struggle to achieve good performance when only a small number of annotated vascular images are available. To address this issue, this paper proposes a novel Conditional Virtual Imaging (CVI) framework for few-shot vascular image segmentation learning. The framework combines limited annotated data with extensive unlabeled data to generate high-quality images, effectively improving the accuracy and robustness of segmentation learning. Our approach primarily includes two innovations: First, aligned image-mask pair generation, which leverages the powerful image generation capabilities of large pre-trained models to produce high-quality vascular images with complex structures using only a few training images; Second, the Dual-Consistency Learning (DCL) strategy, which simultaneously trains the generator and segmentation model, allowing them to learn from each other and maximize the utilization of limited data. Experimental results demonstrate that our CVI framework can generate high-quality medical images and effectively enhance the performance of segmentation models in few-shot scenarios. Our code will be made publicly available online.

Clinical deployment and prospective validation of an AI model for limb-length discrepancy measurements using an open-source platform.

Tsai A, Samal S, Lamonica P, Morris N, McNeil J, Pienaar R

pubmed logopapersSep 24 2025
To deploy an AI model to measure limb-length discrepancy (LLD) and prospectively validate its performance. We encoded the inference of an LLD AI model into a docker container, incorporated it into a computational platform for clinical deployment, and conducted two prospective validation studies: a shadow trial (07/2024-9/2024) and a clinical trial (11/2024-01/2025). During each trial period, we queried for LLD EOS scanograms to serve as inputs to our model. For the shadow trial, we hid the AI-annotated outputs from the radiologists, and for the clinical trial, we displayed the AI-annotated output to the radiologists at the time of study interpretation. Afterward, we collected the bilateral femoral and tibial lengths from the radiology reports and compared them against those generated by the AI model. We used median absolute difference (MAD) and interquartile range (IQR) as summary statistics to assess the performance of our model. Our shadow trial consisted of 84 EOS scanograms from 84 children, with 168 femoral and tibial lengths. The MAD (IQR) of the femoral and tibial lengths were 0.2 cm (0.3 cm) and 0.2 cm (0.3 cm), respectively. Our clinical trial consisted of 114 EOS scanograms from 114 children, with 228 femoral and tibial lengths. The MAD (IQR) of the femoral and tibial lengths were 0.3 cm (0.4 cm) and 0.2 cm (0.3 cm), respectively. We successfully employed a computational platform for seamless integration and deployment of an LLD AI model into our clinical workflow, and prospectively validated its performance. Question No AI models have been clinically deployed for limb-length discrepancy (LLD) assessment in children, and the prospective validation of these models is unknown. Findings We deployed an LLD AI model using a homegrown platform, with prospective trials showing a median absolute difference of 0.2-0.3 cm in estimating bone lengths. Clinical relevance An LLD AI model with performance comparable to that of radiologists can serve as a secondary reader in increasing the confidence and accuracy of LLD measurements.

Improving the performance of medical image segmentation with instructive feature learning.

Dai D, Dong C, Huang H, Liu F, Li Z, Xu S

pubmed logopapersSep 23 2025
Although deep learning models have greatly automated medical image segmentation, they still struggle with complex samples, especially those with irregular shapes, notable scale variations, or blurred boundaries. One key reason for this is that existing methods often overlook the importance of identifying and enhancing the instructive features tailored to various targets, thereby impeding optimal feature extraction and transmission. To address these issues, we propose two innovative modules: an Instructive Feature Enhancement Module (IFEM) and an Instructive Feature Integration Module (IFIM). IFEM synergistically captures rich detailed information and local contextual cues within a unified convolutional module through flexible resolution scaling and extensive information interplay, thereby enhancing the network's feature extraction capabilities. Meanwhile, IFIM explicitly guides the fusion of encoding-decoding features to create more discriminative representations through sensitive intermediate predictions and omnipresent attention operations, thus refining contextual feature transmission. These two modules can be seamlessly integrated into existing segmentation frameworks, significantly boosting their performance. Furthermore, to achieve superior performance with substantially reduced computational demands, we develop an effective and efficient segmentation framework (EESF). Unlike traditional U-Nets, EESF adopts a shallower and wider asymmetric architecture, achieving a better balance between fine-grained information retention and high-order semantic abstraction with minimal learning parameters. Ultimately, by incorporating IFEM and IFIM into EESF, we construct EE-Net, a high-performance and low-resource segmentation network. Extensive experiments across six diverse segmentation tasks consistently demonstrate that EE-Net outperforms a wide range of competing methods in terms of segmentation performance, computational efficiency, and learning ability. The code is available at https://github.com/duweidai/EE-Net.

Enhancing Instance Feature Representation: A Foundation Model-Based Multi-Instance Approach for Neonatal Retinal Screening.

Guo J, Wang K, Tan G, Li G, Zhang X, Chen J, Hu J, Liang Y, Jiang B

pubmed logopapersSep 22 2025
Automated analysis of neonatal fundus images presents a uniquely intricate challenge in medical imaging. Existing methodologies predominantly focus on diagnosing abnormalities from individual images, often leading to inaccuracies due to the diverse and subtle nature of neonatal retinal features. Consequently, clinical standards frequently mandate the acquisition of retinal images from multiple angles to ensure the detection of minute lesions. To accommodate this, we propose leveraging multiple fundus images captured from various regions of the retina to comprehensively screen for a wide range of neonatal ocular pathologies. We employ Multiple Instance Learning (MIL) for this task, and introduce a simple yet effective learnable structure on the existing MIL method, called Learnable Dense to Global (LD2G-MIL). Different from other methods that focus on instance-to-bag feature aggregation, the proposed method focuses on generating better instance-level representations that are co-optimized with downstream MIL targets in a learnable way. Additionally, it incorporates a bag prior-based similarity loss (BP loss) mechanism, leveraging prior knowledge to enhance performance in neonatal retinal screening. To validate the efficacy of our LD2G-MIL method, we compiled the Neonatal Fundus Images (NFI) dataset, an extensive collection comprising 115,621 retinal images from 8,886 neonatal clinical episodes. Empirical evaluations on this dataset demonstrate that our approach consistently outperforms stateof-the-art (SOTA) generic and specialized methods. The code and trained models are publicly available at https: //github.com/CVIU-CSU/LD2G-MIL.

Diffusion-based arbitrary-scale magnetic resonance image super-resolution via progressive k-space reconstruction and denoising.

Wang J, Shi Z, Gu X, Yang Y, Sun J

pubmed logopapersSep 20 2025
Acquiring high-resolution Magnetic resonance (MR) images is challenging due to constraints such as hardware limitations and acquisition times. Super-resolution (SR) techniques offer a potential solution to enhance MR image quality without changing the magnetic resonance imaging (MRI) hardware. However, typical SR methods are designed for fixed upsampling scales and often produce over-smoothed images that lack fine textures and edge details. To address these issues, we propose a unified diffusion-based framework for arbitrary-scale in-plane MR image SR, dubbed Progressive Reconstruction and Denoising Diffusion Model (PRDDiff). Specifically, the forward diffusion process of PRDDiff gradually masks out high-frequency components and adds Gaussian noise to simulate the downsampling process in MRI. To reverse this process, we propose an Adaptive Resolution Restoration Network (ARRNet), which introduces a current step corresponding to the resolution of input MR image and an ending step corresponding to the target resolution. This design guide the ARRNet to recovering the clean MR image at the target resolution from input MR image. The SR process starts from an MR image at the initial resolution and gradually enhances them to higher resolution by progressively reconstructing high-frequency components and removing the noise based on the recovered MR image from ARRNet. Furthermore, we design a multi-stage SR strategy that incrementally enhances resolution through multiple sequential stages to further improve recovery accuracy. Each stage utilizes a set number of sampling steps from PRDDiff, guided by a specific ending step, to recover details pertinent to the predefined intermediate resolution. We conduct extensive experiments on fastMRI knee dataset, fastMRI brain dataset, our real-collected LR-HR brain dataset, and clinical pediatric cerebral palsy (CP) dataset, including T1-weighted and T2-weighted images for the brain and proton density-weighted images for the knee. The results demonstrate that PRDDiff outperforms previous MR image super-resolution methods in term of reconstruction accuracy, generalization, and downstream lesion segmentation accuracy and CP classification performance. The code is publicly available at https://github.com/Jiazhen-Wang/PRDDiff-main.

MUSCLE: A New Perspective to Multi-scale Fusion for Medical Image Classification based on the Theory of Evidence.

Qiu J, Cao J, Huang Y, Zhu Z, Wang F, Lu C, Li Y, Zheng Y

pubmed logopapersSep 19 2025
In the field of medical image analysis, medical image classification is one of the most fundamental and critical tasks. Current researches often rely on the off-the-shelf backbone networks derived from the field of computer vision, hoping to achieve satisfactory classification performance for medical images. However, given the characteristics of medical images, such as scattered distribution and varying sizes of lesions, features extracted with a single scale from the existing backbones often fail to perform accurate medical image classification. To this end, we propose a novel multi-scale learning paradigm, namely MUlti-SCale Learning with trusted Evidences (MUSCLE), which extracts and integrates features from different scales based on the theory of evidence, to generate the more comprehensive feature representation for the medical image classification task. Particularly, the proposed MUSCLE first estimates the uncertainties of features extracted from different scales/stages of the classification backbone as the evidences, and accordingly form the opinions regarding to the feature trustworthiness via a set of evidential deep neural networks. Then, these opinions on different scales of features are ensembled to yield an aggregated opinion, which can be used to adaptively tune the weights of multi-scale features for scatteredly distributed and size-varying lesions, and consequently improve the network capacity for accurate medical image classification. Our MUSCLE paradigm has been evaluated on five publicly available medical image datasets. The experimental results show that the proposed MUSCLE not only improves the accuracy of the original backbone network, but also enhances the reliability and interpretability of model decisions with the trusted evidences (https://github.com/Q4CS/MUSCLE).
Page 1 of 21209 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.