MLAgg-UNet: Advancing Medical Image Segmentation with Efficient Transformer and Mamba-Inspired Multi-Scale Sequence.

Authors

Jiang J,Lei S,Li H,Sun Y

Abstract

Transformers and state space sequence models (SSMs) have attracted interest in biomedical image segmentation for their ability to capture long-range dependency. However, traditional visual state space (VSS) methods suffer from the incompatibility of image tokens with autoregressive assumption. Although Transformer attention does not require this assumption, its high computational cost limits effective channel-wise information utilization. To overcome these limitations, we propose the Mamba-Like Aggregated UNet (MLAgg-UNet), which introduces Mamba-inspired mechanism to enrich Transformer channel representation and exploit implicit autoregressive characteristic within U-shaped architecture. For establishing dependencies among image tokens in single scale, the Mamba-Like Aggregated Attention (MLAgg) block is designed to balance representational ability and computational efficiency. Inspired by the human foveal vision system, Mamba macro-structure, and differential attention, MLAgg block can slide its focus over each image token, suppress irrelevant tokens, and simultaneously strengthen channel-wise information utilization. Moreover, leveraging causal relationships between consecutive low-level and high-level features in U-shaped architecture, we propose the Multi-Scale Mamba Module with Implicit Causality (MSMM) to optimize complementary information across scales. Embedded within skip connections, this module enhances semantic consistency between encoder and decoder features. Extensive experiments on four benchmark datasets, including AbdomenMRI, ACDC, BTCV, and EndoVis17, which cover MRI, CT, and endoscopy modalities, demonstrate that the proposed MLAgg-UNet consistently outperforms state-of-the-art CNN-based, Transformer-based, and Mamba-based methods. Specifically, it achieves improvements of at least 1.24%, 0.20%, 0.33%, and 0.39% in DSC scores on these datasets, respectively. These results highlight the model's ability to effectively capture feature correlations and integrate complementary multi-scale information, providing a robust solution for medical image segmentation. The implementation is publicly available at https://github.com/aticejiang/MLAgg-UNet.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.