Sort by:
Page 1 of 33327 results
Next

Convolutional autoencoder-based deep learning for intracerebral hemorrhage classification using brain CT images.

Nageswara Rao B, Acharya UR, Tan RS, Dash P, Mohapatra M, Sabut S

pubmed logopapersDec 1 2025
Intracerebral haemorrhage (ICH) is a common form of stroke that affects millions of people worldwide. The incidence is associated with a high rate of mortality and morbidity. Accurate diagnosis using brain non-contrast computed tomography (NCCT) is crucial for decision-making on potentially life-saving surgery. Limited access to expert readers and inter-observer variability imposes barriers to timeous and accurate ICH diagnosis. We proposed a hybrid deep learning model for automated ICH diagnosis using NCCT images, which comprises a convolutional autoencoder (CAE) to extract features with reduced data dimensionality and a dense neural network (DNN) for classification. In order to ensure that the model generalizes to new data, we trained it using tenfold cross-validation and holdout methods. Principal component analysis (PCA) based dimensionality reduction and classification is systematically implemented for comparison. The study dataset comprises 1645 ("ICH" class) and 1648 ("Normal" class belongs to patients with non-hemorrhagic stroke) labelled images obtained from 108 patients, who had undergone CT examination on a 64-slice computed tomography scanner at Kalinga Institute of Medical Sciences between 2020 and 2023. Our developed CAE-DNN hybrid model attained 99.84% accuracy, 99.69% sensitivity, 100% specificity, 100% precision, and 99.84% F1-score, which outperformed the comparator PCA-DNN model as well as the published results in the literature. In addition, using saliency maps, our CAE-DNN model can highlight areas on the images that are closely correlated with regions of ICH, which have been manually contoured by expert readers. The CAE-DNN model demonstrates the proof-of-concept for accurate ICH detection and localization, which can potentially be implemented to prioritize the treatment using NCCT images in clinical settings.

The performance of artificial intelligence in image-based prediction of hematoma enlargement: a systematic review and meta-analysis.

Fan W, Wu Z, Zhao W, Jia L, Li S, Wei W, Chen X

pubmed logopapersDec 1 2025
Accurately predicting hematoma enlargement (HE) is crucial for improving the prognosis of patients with cerebral haemorrhage. Artificial intelligence (AI) is a potentially reliable assistant for medical image recognition. This study systematically reviews medical imaging articles on the predictive performance of AI in HE. Retrieved relevant studies published before October, 2024 from Embase, Institute of Electrical and Electronics Engineers (IEEE), PubMed, Web of Science, and Cochrane Library databases. The diagnostic test of predicting hematoma enlargement based on CT image training artificial intelligence model, and reported 2 × 2 contingency tables or provided sensitivity (SE) and specificity (SP) for calculation. Two reviewers independently screened the retrieved citations and extracted data. The methodological quality of studies was assessed using the QUADAS-AI, and Preferred Reporting Items for Systematic reviews and Meta-Analyses was used to ensure standardised reporting of studies. Subgroup analysis was performed based on sample size, risk of bias, year of publication, ratio of training set to test set, and number of centres involved. 36 articles were included in this Systematic review to qualitative analysis, of which 23 have sufficient information for further quantitative analysis. Among these articles, there are a total of 7 articles used deep learning (DL) and 16 articles used machine learning (ML). The comprehensive SE and SP of ML are 78% (95% CI: 69-85%) and 85% (78-90%), respectively, while the AUC is 0.89 (0.86-0.91). The SE and SP of DL was 87% (95% CI: 80-92%) and 75% (67-81%), respectively, with an AUC of 0.88 (0.85-0.91). The subgroup analysis found that when the ratio of the training set to the test set is 7:3, the sensitivity is 0.77(0.62-0.91), <i>p</i> = 0.03; In terms of specificity, the group with sample size more than 200 has higher specificity, which is 0.83 (0.75-0.92), <i>p</i> = 0.02; among the risk groups in the study design, the specificity of the risk group was higher, which was 0.83 (0.76-0.89), <i>p</i> = 0.02. The group specificity of articles published before 2021 was higher, 0.84 (0.77-0.90); and the specificity of data from a single research centre was higher, which was 0.85 (0.80-0.91), <i>p</i> < 0.001. Artificial intelligence algorithms based on imaging have shown good performance in predicting HE.

TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment.

Rifa KR, Ahamed MA, Zhang J, Imran A

pubmed logopapersSep 1 2025
The accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic reliability while minimizing radiation dose. Radiologists' evaluations are time-consuming and labor-intensive. Existing automated approaches often require large CT datasets with predefined image quality assessment (IQA) scores, which often do not align well with clinical evaluations. We aim to develop a reference-free, automated method for CT IQA that closely reflects radiologists' evaluations, reducing the dependency on large annotated datasets. We propose Task-Focused Knowledge Transfer (TFKT), a deep learning-based IQA method leveraging knowledge transfer from task-similar natural image datasets. TFKT incorporates a hybrid convolutional neural network-transformer model, enabling accurate quality predictions by learning from natural image distortions with human-annotated mean opinion scores. The model is pre-trained on natural image datasets and fine-tuned on low-dose computed tomography perceptual image quality assessment data to ensure task-specific adaptability. Extensive evaluations demonstrate that the proposed TFKT method effectively predicts IQA scores aligned with radiologists' assessments on in-domain datasets and generalizes well to out-of-domain clinical pediatric CT exams. The model achieves robust performance without requiring high-dose reference images. Our model is capable of assessing the quality of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> CT image slices in a second. The proposed TFKT approach provides a scalable, accurate, and reference-free solution for CT IQA. The model bridges the gap between traditional and deep learning-based IQA, offering clinically relevant and computationally efficient assessments applicable to real-world clinical settings.

Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study.

Ziegelmayer S, Häntze H, Mertens C, Busch F, Lemke T, Kather JN, Truhn D, Kim SH, Wiestler B, Graf M, Kader A, Bamberg F, Schlett CL, Weiss JB, Schulz-Menger J, Ringhof S, Can E, Pischon T, Niendorf T, Lammert J, Schulze M, Keil T, Peters A, Hadamitzky M, Makowski MR, Adams L, Bressem K

pubmed logopapersJul 1 2025
Chronic back pain (CBP) affects over 80 million people in Europe, contributing to substantial healthcare costs and disability. Understanding modifiable risk factors, such as muscle composition, may aid in prevention and treatment. This study investigates the association between lean muscle mass (LMM) and intermuscular adipose tissue (InterMAT) with CBP using noninvasive whole-body magnetic resonance imaging (MRI). This cross-sectional analysis used whole-body MRI data from 30,868 participants in the German National Cohort (NAKO), collected between 1 May 2014 and 1 September 2019. CBP was defined as back pain persisting >3 months. LMM and InterMAT were quantified via MRI-based muscle segmentations using a validated deep learning model. Associations were analyzed using mixed logistic regression, adjusting for age, sex, diabetes, dyslipidemia, osteoporosis, osteoarthritis, physical activity, and study site. Among 27,518 participants (n = 12,193/44.3% female, n = 14,605/55.7% male; median age 49 years IQR 41; 57), 21.8% (n = 6003; n = 2999/50.0% female, n = 3004/50% male; median age 53 years IQR 46; 60) reported CBP, compared to 78.2% (n = 21,515; n = 9194/42.7% female, n = 12,321/57.3% male; median age 48 years IQR 39; 56) who did not. CBP prevalence was highest in those with low (<500 MET min/week) or high (>5000 MET min/week) self-reported physical activity levels (24.6% (n = 10,892) and 22.0% (n = 3800), respectively) compared to moderate (500-5000 MET min/week) levels (19.4% (n = 12,826); p < 0.0001). Adjusted analyses revealed that a higher InterMAT (OR 1.22 per 2-unit Z-score; 95% CI 1.13-1.30; p < 0.0001) was associated with an increased likelihood of chronic back pain (CBP), whereas higher lean muscle mass (LMM) (OR 0.87 per 2-unit Z-score; 95% CI 0.79-0.95; p = 0.003) was associated with a reduced likelihood of CBP. Stratified analyses confirmed these associations persisted in individuals with osteoarthritis (OA-CBP LMM: 22.9 cm<sup>3</sup>/kg/m; InterMAT: 7.53% vs OA-No CBP LMM: 24.3 cm<sup>3</sup>/kg/m; InterMAT: 6.96% both p < 0.0001) and osteoporosis (OP-CBP LMM: 20.9 cm<sup>3</sup>/kg/m; InterMAT: 8.43% vs OP-No CBP LMM: 21.3 cm<sup>3</sup>/kg/m; InterMAT: 7.9% p = 0.16 and p = 0.0019). Higher pain intensity (Pain Intensity Numerical Rating Scale ≥4) correlated with lower LMM (2-unit Z-score deviation = OR, 0.63; 95% CI, 0.57-0.70; p < 0.0001) and higher InterMAT (2-unit Z-score deviation = OR, 1.22; 95% CI, 1.13-1.30; p < 0.0001), independent of physical activity, osteoporosis and osteoarthritis. This large, population-based study highlights the associations of InterMAT and LMM with CBP. Given the limitations of the cross-sectional design, our findings can be seen as an impetus for further causal investigations within a broader, multidisciplinary framework to guide future research toward improved prevention and treatment. The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, 01ER1801A/B/C/D and 01ER2301A/B/C], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association.

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

A quantitative tumor-wide analysis of morphological heterogeneity of colorectal adenocarcinoma.

Dragomir MP, Popovici V, Schallenberg S, Čarnogurská M, Horst D, Nenutil R, Bosman F, Budinská E

pubmed logopapersJul 1 2025
The intertumoral and intratumoral heterogeneity of colorectal adenocarcinoma (CRC) at the morphologic level is poorly understood. Previously, we identified morphological patterns associated with CRC molecular subtypes and their distinct molecular motifs. Here we aimed to evaluate the heterogeneity of these patterns across CRC. Three pathologists evaluated dominant, secondary, and tertiary morphology on four sections from four different FFPE blocks per tumor in a pilot set of 22 CRCs. An AI-based image analysis tool was trained on these tumors to evaluate the morphologic heterogeneity on an extended set of 161 stage I-IV primary CRCs (n = 644 H&E sections). We found that most tumors had two or three different dominant morphotypes and the complex tubular (CT) morphotype was the most common. The CT morphotype showed no combinatorial preferences. Desmoplastic (DE) morphotype was rarely dominant and rarely combined with other dominant morphotypes. Mucinous (MU) morphotype was mostly combined with solid/trabecular (TB) and papillary (PP) morphotypes. Most tumors showed medium or high heterogeneity, but no associations were found between heterogeneity and clinical parameters. A higher proportion of DE morphotype was associated with higher T-stage, N-stage, distant metastases, AJCC stage, and shorter overall survival (OS) and relapse-free survival (RFS). A higher proportion of MU morphotype was associated with higher grade, right side, and microsatellite instability (MSI). PP morphotype was associated with earlier T- and N-stage, absence of metastases, and improved OS and RFS. CT was linked to left side, lower grade, and better survival in stage I-III patients. MSI tumors showed higher proportions of MU and TB, and lower CT and PP morphotypes. These findings suggest that morphological shifts accompany tumor progression and highlight the need for extensive sampling and AI-based analysis. In conclusion, we observed unexpectedly high intratumoral morphological heterogeneity of CRC and found that it is not heterogeneity per se, but the proportions of morphologies that are associated with clinical outcomes.

Automatic adult age estimation using bone mineral density of proximal femur via deep learning.

Cao Y, Ma Y, Zhang S, Li C, Chen F, Zhang J, Huang P

pubmed logopapersJul 1 2025
Accurate adult age estimation (AAE) is critical for forensic and anthropological applications, yet traditional methods relying on bone mineral density (BMD) face significant challenges due to biological variability and methodological limitations. This study aims to develop an end-to-end Deep Learning (DL) based pipeline for automated AAE using BMD from proximal femoral CT scans. The main objectives are to construct a large-scale dataset of 5151 CT scans from real-world clinical and cadaver cohorts, fine-tune the Segment Anything Model (SAM) for accurate femoral bone segmentation, and evaluate multiple convolutional neural networks (CNNs) for precise age estimation based on segmented BMD data. Model performance was assessed through cross-validation, internal clinical testing, and external post-mortem validation. SAM achieved excellent segmentation performance with a Dice coefficient of 0.928 and an average intersection over union (mIoU) of 0.869. The CNN models achieved an average mean absolute error (MAE) of 5.20 years in cross-validation (male: 5.72; female: 4.51), which improved to 4.98 years in the independent clinical test set (male: 5.32; female: 4.56). External validation on the post-mortem dataset revealed an MAE of 6.91 years, with 6.97 for males and 6.69 for females. Ensemble learning further improved accuracy, reducing MAE to 4.78 years (male: 5.12; female: 4.35) in the internal test set, and 6.58 years (male: 6.64; female: 6.37) in the external validation set. These findings highlight the feasibility of dl-driven AAE and its potential for forensic applications, offering a fully automated framework for robust age estimation.

Mechanically assisted non-invasive ventilation for liver SABR: Improve CBCT, treat more accurately.

Pierrard J, Audag N, Massih CA, Garcia MA, Moreno EA, Colot A, Jardinet S, Mony R, Nevez Marques AF, Servaes L, Tison T, den Bossche VV, Etume AW, Zouheir L, Ooteghem GV

pubmed logopapersJul 1 2025
Cone-beam computed tomography (CBCT) for image-guided radiotherapy (IGRT) during liver stereotactic ablative radiotherapy (SABR) is degraded by respiratory motion artefacts, potentially jeopardising treatment accuracy. Mechanically assisted non-invasive ventilation-induced breath-hold (MANIV-BH) can reduce these artefacts. This study compares MANIV-BH and free-breathing CBCTs regarding image quality, IGRT variability, automatic registration accuracy, and deep-learning auto-segmentation performance. Liver SABR CBCTs were presented blindly to 14 operators: 25 patients with FB and 25 with MANIV-BH. They rated CBCT quality and IGRT ease (rigid registration with planning CT). Interoperator IGRT variability was compared between FB and MANIV-BH. Automatic gross tumour volume (GTV) mapping accuracy was compared using automatic rigid registration and image-guided deformable registration. Deep-learning organ-at-risk (OAR) auto-segmentation was rated by an operator, who recorded the time dedicated for manual correction of these volumes. MANIV-BH significantly improved CBCT image quality ("Excellent"/"Good": 83.4 % versus 25.4 % with FB, p < 0.001), facilitated IGRT ("Very easy"/"Easy": 68.0 % versus 38.9 % with FB, p < 0.001), and reduced IGRT variability, particularly for trained operators (overall variability of 3.2 mm versus 4.6 mm with FB, p = 0.010). MANIV-BH improved deep-learning auto-segmentation performance (80.0 % rated "Excellent"/"Good" versus 4.0 % with FB, p < 0.001), and reduced median manual correction time by 54.2 % compared to FB (p < 0.001). However, automatic GTV mapping accuracy was not significantly different between MANIV-BH and FB. In liver SABR, MANIV-BH significantly improves CBCT quality, reduces interoperator IGRT variability, and enhances OAR auto-segmentation. Beyond being safe and effective for respiratory motion mitigation, MANIV increases accuracy during treatment delivery, although its implementation requires resources.

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

Mamba-based deformable medical image registration with an annotated brain MR-CT dataset.

Wang Y, Guo T, Yuan W, Shu S, Meng C, Bai X

pubmed logopapersJul 1 2025
Deformable registration is essential in medical image analysis, especially for handling various multi- and mono-modal registration tasks in neuroimaging. Existing studies lack exploration of brain MR-CT registration, and face challenges in both accuracy and efficiency improvements of learning-based methods. To enlarge the practice of multi-modal registration in brain, we present SR-Reg, a new benchmark dataset comprising 180 volumetric paired MR-CT images and annotated anatomical regions. Building on this foundation, we introduce MambaMorph, a novel deformable registration network based on an efficient state space model Mamba for global feature learning, with a fine-grained feature extractor for low-level embedding. Experimental results demonstrate that MambaMorph surpasses advanced ConvNet-based and Transformer-based networks across several multi- and mono-modal tasks, showcasing impressive enhancements of efficacy and efficiency. Code and dataset are available at https://github.com/mileswyn/MambaMorph.
Page 1 of 33327 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.