Sort by:
Page 1 of 323 results

MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies.

Ahmadzadeh AM, Broomand Lomer N, Ashoobi MA, Elyassirad D, Gheiji B, Vatanparast M, Rostami A, Abouei Mehrizi MA, Tabari A, Bathla G, Faghani S

pubmed logopapersMay 15 2025
We conducted a systematic review and meta-analysis to evaluate the performance of magnetic resonance imaging (MRI)-derived deep learning (DL) models in predicting 1p/19q codeletion status in glioma patients. The literature search was performed in four databases: PubMed, Web of Science, Embase, and Scopus. We included the studies that evaluated the performance of end-to-end DL models in predicting the status of glioma 1p/19q codeletion. The quality of the included studies was assessed by the Quality assessment of diagnostic accuracy studies-2 (QUADAS-2) METhodological RadiomICs Score (METRICS). We calculated diagnostic pooled estimates and heterogeneity was evaluated using I<sup>2</sup>. Subgroup analysis and sensitivity analysis were conducted to explore sources of heterogeneity. Publication bias was evaluated by Deeks' funnel plots. Twenty studies were included in the systematic review. Only two studies had a low quality. A meta-analysis of the ten studies demonstrated a pooled sensitivity of 0.77 (95% CI: 0.63-0.87), a specificity of 0.85 (95% CI: 0.74-0.92), a positive diagnostic likelihood ratio (DLR) of 5.34 (95% CI: 2.88-9.89), a negative DLR of 0.26 (95% CI: 0.16-0.45), a diagnostic odds ratio of 20.24 (95% CI: 8.19-50.02), and an area under the curve of 0.89 (95% CI: 0.86-0.91). The subgroup analysis identified a significant difference between groups depending on the segmentation method used. DL models can predict glioma 1p/19q codeletion status with high accuracy and may enhance non-invasive tumor characterization and aid in the selection of optimal therapeutic strategies.

Scientific Evidence for Clinical Text Summarization Using Large Language Models: Scoping Review.

Bednarczyk L, Reichenpfader D, Gaudet-Blavignac C, Ette AK, Zaghir J, Zheng Y, Bensahla A, Bjelogrlic M, Lovis C

pubmed logopapersMay 15 2025
Information overload in electronic health records requires effective solutions to alleviate clinicians' administrative tasks. Automatically summarizing clinical text has gained significant attention with the rise of large language models. While individual studies show optimism, a structured overview of the research landscape is lacking. This study aims to present the current state of the art on clinical text summarization using large language models, evaluate the level of evidence in existing research and assess the applicability of performance findings in clinical settings. This scoping review complied with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Literature published between January 1, 2019, and June 18, 2024, was identified from 5 databases: PubMed, Embase, Web of Science, IEEE Xplore, and ACM Digital Library. Studies were excluded if they did not describe transformer-based models, did not focus on clinical text summarization, did not engage with free-text data, were not original research, were nonretrievable, were not peer-reviewed, or were not in English, French, Spanish, or German. Data related to study context and characteristics, scope of research, and evaluation methodologies were systematically collected and analyzed by 3 authors independently. A total of 30 original studies were included in the analysis. All used observational retrospective designs, mainly using real patient data (n=28, 93%). The research landscape demonstrated a narrow research focus, often centered on summarizing radiology reports (n=17, 57%), primarily involving data from the intensive care unit (n=15, 50%) of US-based institutions (n=19, 73%), in English (n=26, 87%). This focus aligned with the frequent reliance on the open-source Medical Information Mart for Intensive Care dataset (n=15, 50%). Summarization methodologies predominantly involved abstractive approaches (n=17, 57%) on single-document inputs (n=4, 13%) with unstructured data (n=13, 43%), yet reporting on methodological details remained inconsistent across studies. Model selection involved both open-source models (n=26, 87%) and proprietary models (n=7, 23%). Evaluation frameworks were highly heterogeneous. All studies conducted internal validation, but external validation (n=2, 7%), failure analysis (n=6, 20%), and patient safety risks analysis (n=1, 3%) were infrequent, and none reported bias assessment. Most studies used both automated metrics and human evaluation (n=16, 53%), while 10 (33%) used only automated metrics, and 4 (13%) only human evaluation. Key barriers hinder the translation of current research into trustworthy, clinically valid applications. Current research remains exploratory and limited in scope, with many applications yet to be explored. Performance assessments often lack reliability, and clinical impact evaluations are insufficient raising concerns about model utility, safety, fairness, and data privacy. Advancing the field requires more robust evaluation frameworks, a broader research scope, and a stronger focus on real-world applicability.

2.5D Multi-view Averaging Diffusion Model for 3D Medical Image Translation: Application to Low-count PET Reconstruction with CT-less Attenuation Correction.

Chen T, Hou J, Zhou Y, Xie H, Chen X, Liu Q, Guo X, Xia M, Duncan JS, Liu C, Zhou B

pubmed logopapersMay 15 2025
Positron Emission Tomography (PET) is an important clinical imaging tool but inevitably introduces radiation exposure to patients and healthcare providers. Reducing the tracer injection dose and eliminating the CT acquisition for attenuation correction can reduce the overall radiation dose, but often results in PET with high noise and bias. Thus, it is desirable to develop 3D methods to translate the non-attenuation-corrected low-dose PET (NAC-LDPET) into attenuation-corrected standard-dose PET (AC-SDPET). Recently, diffusion models have emerged as a new state-of-the-art deep learning method for image-to-image translation, better than traditional CNN-based methods. However, due to the high computation cost and memory burden, it is largely limited to 2D applications. To address these challenges, we developed a novel 2.5D Multi-view Averaging Diffusion Model (MADM) for 3D image-to-image translation with application on NAC-LDPET to AC-SDPET translation. Specifically, MADM employs separate diffusion models for axial, coronal, and sagittal views, whose outputs are averaged in each sampling step to ensure the 3D generation quality from multiple views. To accelerate the 3D sampling process, we also proposed a strategy to use the CNN-based 3D generation as a prior for the diffusion model. Our experimental results on human patient studies suggested that MADM can generate high-quality 3D translation images, outperforming previous CNN-based and Diffusion-based baseline methods. The code is available at https://github.com/tianqic/MADM.

Whole-body CT-to-PET synthesis using a customized transformer-enhanced GAN.

Xu B, Nie Z, He J, Li A, Wu T

pubmed logopapersMay 14 2025
Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET-CT) is a multi-modality medical imaging technique widely used for screening and diagnosis of lesions and tumors, in which, CT can provide detailed anatomical structures, while PET can show metabolic activities. Nevertheless, it has disadvantages such as long scanning time, high cost, and relatively high radiation doses.&#xD;&#xD;Purpose: We propose a deep learning model for the whole-body CT-to-PET synthesis task, generating high-quality synthetic PET images that are comparable to real ones in both clinical relevance and diagnostic value.&#xD;&#xD;Material: We collect 102 pairs of 3D CT and PET scans, which are sliced into 27,240 pairs of 2D CT and PET images ( training: 21,855 pairs, validation: 2,810, testing: 2,575 pairs).&#xD;&#xD;Methods: We propose a Transformer-enhanced Generative Adversarial Network (GAN) for whole-body CT-to-PET synthesis task. The CPGAN model uses residual blocks and Fully Connected Transformer Residual (FCTR) blocks to capture both local features and global contextual information. A customized loss function incorporating structural consistency is designed to improve the quality of synthesized PET images.&#xD;&#xD;Results: Both quantitative and qualitative evaluation results demonstrate effectiveness of the CPGAN model. The mean and standard variance of NRMSE,PSNR and SSIM values on test set are (16.90 ± 12.27) × 10-4, 28.71 ± 2.67 and 0.926 ± 0.033, respectively, outperforming other seven state-of-the-art models. Three radiologists independently and blindly evaluated and gave subjective scores to 100 randomly chosen PET images (50 real and 50 synthetic). By Wilcoxon signed rank test, there are no statistical differences between the synthetic PET images and the real ones.&#xD;&#xD;Conclusions: Despite the inherent limitations of CT images to directly reflect biological information of metabolic tissues, CPGAN model effectively synthesizes satisfying PET images from CT scans, which has potential in reducing the reliance on actual PET-CT scans.

An automated cascade framework for glioma prognosis via segmentation, multi-feature fusion and classification techniques.

Hamoud M, Chekima NEI, Hima A, Kholladi NH

pubmed logopapersMay 13 2025
Glioma is one of the most lethal types of brain tumors, accounting for approximately 33% of all diagnosed brain tumor cases. Accurate segmentation and classification are crucial for precise glioma characterization, emphasizing early detection of malignancy, effective treatment planning, and prevention of tumor progression. Magnetic Resonance Imaging (MRI) serves as a non-invasive imaging modality that allows detailed examination of gliomas without exposure to ionizing radiation. However, manual analysis of MRI scans is impractical, time-consuming, subjective, and requires specialized expertise from radiologists. To address this, computer-aided diagnosis (CAD) systems have greatly evolved as powerful tools to support neuro-oncologists in the brain cancer screening process. In this work, we present a glioma classification framework based on 3D multi-modal MRI segmentation using the CNN models SegResNet and Swin UNETR which incorporates transformer mechanisms for enhancing segmentation performance. MRI images undergo preprocessing with a Gaussian filter and skull stripping to improve tissue localization. Key textural features are then extracted from segmented tumor regions using Gabor Transform, Discrete Wavelet Transform (DWT), and deep features from ResNet50. These features are fused, normalized, and classified using a Support Vector Machine (SVM) to distinguish between Low-Grade Glioma (LGG) and High-Grade Glioma (HGG). Extensive experiments on benchmark datasets, including BRATS2020 and BRATS2023, demonstrate the effectiveness of the proposed approach. Our model achieved Dice scores of 0.815 for Tumor Core, 0.909 for Whole Tumor, and 0.829 for Enhancing Tumor. Concerning classification, the framework attained 97% accuracy, 94% precision, 96% recall, and a 95% F1-score. These results highlight the potential of the proposed framework to provide reliable support for radiologists in the early detection and classification of gliomas.

DEMAC-Net: A Dual-Encoder Multiattention Collaborative Network for Cervical Nerve Pathway and Adjacent Anatomical Structure Segmentation.

Cui H, Duan J, Lin L, Wu Q, Guo W, Zang Q, Zhou M, Fang W, Hu Y, Zou Z

pubmed logopapersMay 13 2025
Currently, cervical anesthesia is performed using three main approaches: superficial cervical plexus block, deep cervical plexus block, and intermediate plexus nerve block. However, each technique carries inherent risks and demands significant clinical expertise. Ultrasound imaging, known for its real-time visualization capabilities and accessibility, is widely used in both diagnostic and interventional procedures. Nevertheless, accurate segmentation of small and irregularly shaped structures such as the cervical and brachial plexuses remains challenging due to image noise, complex anatomical morphology, and limited annotated training data. This study introduces DEMAC-Net-a dual-encoder, multiattention collaborative network-to significantly improve the segmentation accuracy of these neural structures. By precisely identifying the cervical nerve pathway (CNP) and adjacent anatomical tissues, DEMAC-Net aims to assist clinicians, especially those less experienced, in effectively guiding anesthesia procedures and accurately identifying optimal needle insertion points. Consequently, this improvement is expected to enhance clinical safety, reduce procedural risks, and streamline decision-making efficiency during ultrasound-guided regional anesthesia. DEMAC-Net combines a dual-encoder architecture with the Spatial Understanding Convolution Kernel (SUCK) and the Spatial-Channel Attention Module (SCAM) to extract multi-scale features effectively. Additionally, a Global Attention Gate (GAG) and inter-layer fusion modules refine relevant features while suppressing noise. A novel dataset, Neck Ultrasound Dataset (NUSD), was introduced, containing 1,500 annotated ultrasound images across seven anatomical regions. Extensive experiments were conducted on both NUSD and the BUSI public dataset, comparing DEMAC-Net to state-of-the-art models using metrics such as Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). On the NUSD dataset, DEMAC-Net achieved a mean DSC of 93.3%, outperforming existing models. For external validation on the BUSI dataset, it demonstrated superior generalization, achieving a DSC of 87.2% and a mean IoU of 77.4%, surpassing other advanced methods. Notably, DEMAC-Net displayed consistent segmentation stability across all tested structures. The proposed DEMAC-Net significantly improves segmentation accuracy for small nerves and complex anatomical structures in ultrasound images, outperforming existing methods in terms of accuracy and computational efficiency. This framework holds great potential for enhancing ultrasound-guided procedures, such as peripheral nerve blocks, by providing more precise anatomical localization, ultimately improving clinical outcomes.

Benchmarking Radiology Report Generation From Noisy Free-Texts.

Yuan Y, Zheng Y, Qu L

pubmed logopapersMay 12 2025
Automatic radiology report generation can enhance diagnostic efficiency and accuracy. However, clean open-source imaging scan-report pairs are limited in scale and variety. Moreover, the vast amount of radiological texts available online is often too noisy to be directly employed. To address this challenge, we introduce a novel task called Noisy Report Refinement (NRR), which generates radiology reports from noisy free-texts. To achieve this, we propose a report refinement pipeline that leverages large language models (LLMs) enhanced with guided self-critique and report selection strategies. To address the inability of existing radiology report generation metrics in measuring cleanliness, radiological usefulness, and factual correctness across various modalities of reports in NRR task, we introduce a new benchmark, NRRBench, for NRR evaluation. This benchmark includes two online-sourced datasets and four clinically explainable LLM-based metrics: two metrics evaluate the matching rate of radiology entities and modality-specific template attributes respectively, one metric assesses report cleanliness, and a combined metric evaluates overall NRR performance. Experiments demonstrate that guided self-critique and report selection strategies significantly improve the quality of refined reports. Additionally, our proposed metrics show a much higher correlation with noisy rate and error count of reports than radiology report generation metrics in evaluating NRR.

MRI-Based Diagnostic Model for Alzheimer's Disease Using 3D-ResNet.

Chen D, Yang H, Li H, He X, Mu H

pubmed logopapersMay 12 2025
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia worldwide and remains incurable once it begins. Therefore, early and accurate diagnosis is essential for effective intervention. Leveraging recent advances in deep learning, this study proposes a novel diagnostic model based on the 3D-ResNet architecture to classify three cognitive states: AD, mild cognitive impairment (MCI), and cognitively normal (CN) individuals, using MRI data. The model integrates the strengths of ResNet and 3D convolutional neural networks (3D-CNN), and incorporates a special attention mechanism(SAM) within the residual structure to enhance feature representation. The study utilized the ADNI dataset, comprising 800 brain MRI scans. The dataset was split in a 7:3 ratio for training and testing, and the network was trained using data augmentation and cross-validation strategies. The proposed model achieved 92.33% accuracy in the three-class classification task, and 97.61%, 95.83%, and 93.42% accuracy in binary classifications of AD vs. CN, AD vs. MCI, and CN vs. MCI, respectively, outperforming existing state-of-the-art methods. Furthermore, Grad-CAM heatmaps and 3D MRI reconstructions revealed that the cerebral cortex and hippocampus are critical regions for AD classification. These findings demonstrate a robust and interpretable AI-based diagnostic framework for AD, providing valuable technical support for its timely detection and clinical intervention.

Enhancing noninvasive pancreatic cystic neoplasm diagnosis with multimodal machine learning.

Huang W, Xu Y, Li Z, Li J, Chen Q, Huang Q, Wu Y, Chen H

pubmed logopapersMay 12 2025
Pancreatic cystic neoplasms (PCNs) are a complex group of lesions with a spectrum of malignancy. Accurate differentiation of PCN types is crucial for patient management, as misdiagnosis can result in unnecessary surgeries or treatment delays, affecting the quality of life. The significance of developing a non-invasive, accurate diagnostic model is underscored by the need to improve patient outcomes and reduce the impact of these conditions. We developed a machine learning model capable of accurately identifying different types of PCNs in a non-invasive manner, by using a dataset comprising 449 MRI and 568 CT scans from adult patients, spanning from 2009 to 2022. The study's results indicate that our multimodal machine learning algorithm, which integrates both clinical and imaging data, significantly outperforms single-source data algorithms. Specifically, it demonstrated state-of-the-art performance in classifying PCN types, achieving an average accuracy of 91.2%, precision of 91.7%, sensitivity of 88.9%, and specificity of 96.5%. Remarkably, for patients with mucinous cystic neoplasms (MCNs), regardless of undergoing MRI or CT imaging, the model achieved a 100% prediction accuracy rate. It indicates that our non-invasive multimodal machine learning model offers strong support for the early screening of MCNs, and represents a significant advancement in PCN diagnosis for improving clinical practice and patient outcomes. We also achieved the best results on an additional pancreatic cancer dataset, which further proves the generality of our model.

Paradigm-Shifting Attention-based Hybrid View Learning for Enhanced Mammography Breast Cancer Classification with Multi-Scale and Multi-View Fusion.

Zhao H, Zhang C, Wang F, Li Z, Gao S

pubmed logopapersMay 12 2025
Breast cancer poses a serious threat to women's health, and its early detection is crucial for enhancing patient survival rates. While deep learning has significantly advanced mammographic image analysis, existing methods struggle to balance between view consistency with input adaptability. Furthermore, current models face challenges in accurately capturing multi-scale features, especially when subtle lesion variations across different scales are involved. To address this challenge, this paper proposes a Hybrid View Learning (HVL) paradigm that unifies traditional Single-View and Multi-View Learning approaches. The core component of this paradigm, our Attention-based Hybrid View Learning (AHVL) framework, incorporates two essential attention mechanisms: Contrastive Switch Attention (CSA) and Selective Pooling Attention (SPA). The CSA mechanism flexibly alternates between self-attention and cross-attention based on data integrity, integrating a pre-trained language model for contrastive learning to enhance model stability. Meanwhile, the SPA module employs multi-scale feature pooling and selection to capture critical features from mammographic images, overcoming the limitations of traditional models that struggle with fine-grained lesion detection. Experimental validation on the INbreast and CBIS-DDSM datasets shows that the AHVL framework outperforms both single-view and multi-view methods, especially under extreme view missing conditions. Even with an 80% missing rate on both datasets, AHVL maintains the highest accuracy and experiences the smallest performance decline in metrics like F1 score and AUC-PR, demonstrating its robustness and stability. This study redefines mammographic image analysis by leveraging attention-based hybrid view processing, setting a new standard for precise and efficient breast cancer diagnosis.
Page 1 of 323 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.