Sort by:
Page 1 of 20199 results
Next

A comparison of an integrated and image-only deep learning model for predicting the disappearance of indeterminate pulmonary nodules.

Wang J, Cai J, Tang W, Dudurych I, van Tuinen M, Vliegenthart R, van Ooijen P

pubmed logopapersJul 1 2025
Indeterminate pulmonary nodules (IPNs) require follow-up CT to assess potential growth; however, benign nodules may disappear. Accurately predicting whether IPNs will resolve is a challenge for radiologists. Therefore, we aim to utilize deep-learning (DL) methods to predict the disappearance of IPNs. This retrospective study utilized data from the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON) and Imaging in Lifelines (ImaLife) cohort. Participants underwent follow-up CT to determine the evolution of baseline IPNs. The NELSON data was used for model training. External validation was performed in ImaLife. We developed integrated DL-based models that incorporated CT images and demographic data (age, sex, smoking status, and pack years). We compared the performance of integrated methods with those limited to CT images only and calculated sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). From a clinical perspective, ensuring high specificity is critical, as it minimizes false predictions of non-resolving nodules that should be monitored for evolution on follow-up CTs. Feature importance was calculated using SHapley Additive exPlanations (SHAP) values. The training dataset included 840 IPNs (134 resolving) in 672 participants. The external validation dataset included 111 IPNs (46 resolving) in 65 participants. On the external validation set, the performance of the integrated model (sensitivity, 0.50; 95 % CI, 0.35-0.65; specificity, 0.91; 95 % CI, 0.80-0.96; AUC, 0.82; 95 % CI, 0.74-0.90) was comparable to that solely trained on CT image (sensitivity, 0.41; 95 % CI, 0.27-0.57; specificity, 0.89; 95 % CI, 0.78-0.95; AUC, 0.78; 95 % CI, 0.69-0.86; P = 0.39). The top 10 most important features were all image related. Deep learning-based models can predict the disappearance of IPNs with high specificity. Integrated models using CT scans and clinical data had comparable performance to those using only CT images.

Reconstruction-based approach for chest X-ray image segmentation and enhanced multi-label chest disease classification.

Hage Chehade A, Abdallah N, Marion JM, Hatt M, Oueidat M, Chauvet P

pubmed logopapersJul 1 2025
U-Net is a commonly used model for medical image segmentation. However, when applied to chest X-ray images that show pathologies, it often fails to include these critical pathological areas in the generated masks. To address this limitation, in our study, we tackled the challenge of precise segmentation and mask generation by developing a novel approach, using CycleGAN, that encompasses the areas affected by pathologies within the region of interest, allowing the extraction of relevant radiomic features linked to pathologies. Furthermore, we adopted a feature selection approach to focus the analysis on the most significant features. The results of our proposed pipeline are promising, with an average accuracy of 92.05% and an average AUC of 89.48% for the multi-label classification of effusion and infiltration acquired from the ChestX-ray14 dataset, using the XGBoost model. Furthermore, applying our methodology to the classification of the 14 diseases in the ChestX-ray14 dataset resulted in an average AUC of 83.12%, outperforming previous studies. This research highlights the importance of effective pathological mask generation and features selection for accurate classification of chest diseases. The promising results of our approach underscore its potential for broader applications in the classification of chest diseases.

Multi-label pathology editing of chest X-rays with a Controlled Diffusion Model.

Chu H, Qi X, Wang H, Liang Y

pubmed logopapersJul 1 2025
Large-scale generative models have garnered significant attention in the field of medical imaging, particularly for image editing utilizing diffusion models. However, current research has predominantly concentrated on pathological editing involving single or a limited number of labels, making it challenging to achieve precise modifications. Inaccurate alterations may lead to substantial discrepancies between the generated and original images, thereby impacting the clinical applicability of these models. This paper presents a diffusion model with untangling capabilities applied to chest X-ray image editing, incorporating a mask-based mechanism for bone and organ information. We successfully perform multi-label pathological editing of chest X-ray images without compromising the integrity of the original thoracic structure. The proposed technology comprises a chest X-ray image classifier and an intricate organ mask; the classifier supplies essential feature labels that require untangling for the stabilized diffusion model, while the complex organ mask facilitates directed and controllable edits to chest X-rays. We assessed the outcomes of our proposed algorithm, named Chest X-rays_Mpe, using MS-SSIM and CLIP scores alongside qualitative evaluations conducted by radiology experts. The results indicate that our approach surpasses existing algorithms across both quantitative and qualitative metrics.

A lung structure and function information-guided residual diffusion model for predicting idiopathic pulmonary fibrosis progression.

Jiang C, Xing X, Nan Y, Fang Y, Zhang S, Walsh S, Yang G, Shen D

pubmed logopapersJul 1 2025
Idiopathic Pulmonary Fibrosis (IPF) is a progressive lung disease that continuously scars and thickens lung tissue, leading to respiratory difficulties. Timely assessment of IPF progression is essential for developing treatment plans and improving patient survival rates. However, current clinical standards require multiple (usually two) CT scans at certain intervals to assess disease progression. This presents a dilemma: the disease progression is identified only after the disease has already progressed. To address this issue, a feasible solution is to generate the follow-up CT image from the patient's initial CT image to achieve early prediction of IPF. To this end, we propose a lung structure and function information-guided residual diffusion model. The key components of our model include (1) using a 2.5D generation strategy to reduce computational cost of generating 3D images with the diffusion model; (2) designing structural attention to mitigate negative impact of spatial misalignment between the two CT images on generation performance; (3) employing residual diffusion to accelerate model training and inference while focusing more on differences between the two CT images (i.e., the lesion areas); and (4) developing a CLIP-based text extraction module to extract lung function test information and further using such extracted information to guide the generation. Extensive experiments demonstrate that our method can effectively predict IPF progression and achieve superior generation performance compared to state-of-the-art methods.

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Peng M, Wang M, Yang X, Wang Y, Xie L, An W, Ge F, Yang C, Wang K

pubmed logopapersJul 1 2025
To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival (PFS) and overall survival (OS) in PD-L1-positive patients undergoing first-line immunotherapy. We retrospectively analysed 143 NSCLC patients who underwent pretreatment <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT scans, of whom 86 were PD-L1-positive. Clinical data collected included gender, age, smoking history, Tumor-Node-Metastases (TNM) staging system, pathologic types, laboratory parameters, and PET metabolic parameters. Four machine learning algorithms-Bayes, logistic, random forest, and Supportsupport vector machine (SVM)-were used to build models. The predictive performance was validated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox analyses identified independent predictors of OS and PFS in PD-L1-positive expression patients undergoing immunotherapy, and a nomogram was created to predict OS. A total of 20 models were built for predicting PD-L1 expression. The clinical combined PET/CT radiomics model based on the SVM algorithm performed best (area under curve for training and test sets: 0.914 and 0.877, respectively). The Cox analyses showed that smoking history independently predicted PFS. SUVmean, monocyte percentage and white blood cell count were independent predictors of OS, and the nomogram was created to predict 1-year, 2-year, and 3-year OS based on these three factors. We developed PET/CT-based machine learning models to help predict PD-L1 expression in NSCLC patients and identified independent predictors of PFS and OS in PD-L1-positive patients receiving immunotherapy, thereby aiding precision treatment.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Predicting Primary Graft Dysfunction in Systemic Sclerosis Lung Transplantation Using Machine-Learning and CT Features.

Singh J, Meng X, Leader JK, Ryan J, Pu L, Deitz R, Chan EG, Shigemura N, Hage CA, Sanchez PG, Pu J

pubmed logopapersJul 1 2025
Primary graft dysfunction (PGD) is a significant barrier to survival in lung transplant (LTx) recipients. PGD in patients with systemic sclerosis (SSc) remains especially underrepresented in research. We investigated 92 SSc recipients (mean age 51 years ± 10) who underwent bilateral LTx between 2007 and 2020. PGD was defined as grade 3 PGD at 72 h post-LTx. A comprehensive set of CT image features was automatically computed from recipient chest CT scans using deep learning algorithms. Volumetric analysis of recipients' lungs and chest cavity was used to estimate lung-size matching. Four machine learning (ML) algorithms were developed to predict PGD, including multivariate logistic regression, support vector machine (SVM), random forest classifier (RFC), and multilayer perceptron (MLP). PGD was significantly associated with BMI >30 kg/m<sup>2</sup> (p = 0.009), African American race (p = 0.011), lower Preop FEV1 (p = 0.002) and FVC (p = 0.004), longer waitlist time (p = 0.014), higher lung allocation score (LAS) (p = 0.028), and interstitial lung disease (p = 0.050). From CT analysis, PGD was significantly associated with decreased lung volume (p < 0.001), increased heart-chest cavity volume ratio (p < 0.001), epicardial (p = 0.033) and total heart (p = 0.049) adipose tissue, and five cardiopulmonary features (p < 0.050). Oversized donor allografts estimated using CT analysis were significantly associated with PGD (p < 0.050). The MLP model achieved a maximum AUROC of 0.85 (95% CI: 0.81-0.88) in predicting PGD with four features: Preop FEV1, heart-chest cavity volume ratio, waitlist time, and donor to recipient chest cavity volume ratio. CT-derived features are significantly associated with PGD, and models incorporating these features can predict PGD in SSc recipients.

Radiomics for lung cancer diagnosis, management, and future prospects.

Boubnovski Martell M, Linton-Reid K, Chen M, Aboagye EO

pubmed logopapersJul 1 2025
Lung cancer remains the leading cause of cancer-related mortality worldwide, with its early detection and effective treatment posing significant clinical challenges. Radiomics, the extraction of quantitative features from medical imaging, has emerged as a promising approach for enhancing diagnostic accuracy, predicting treatment responses, and personalising patient care. This review explores the role of radiomics in lung cancer diagnosis and management, with methods ranging from handcrafted radiomics to deep learning techniques that can capture biological intricacies. The key applications are highlighted across various stages of lung cancer care, including nodule detection, histology prediction, and disease staging, where artificial intelligence (AI) models demonstrate superior specificity and sensitivity. The article also examines future directions, emphasising the integration of large language models, explainable AI (XAI), and super-resolution imaging techniques as transformative developments. By merging diverse data sources and incorporating interpretability into AI models, radiomics stands poised to redefine clinical workflows, offering more robust and reliable tools for lung cancer diagnosis, treatment planning, and outcome prediction. These advancements underscore radiomics' potential in supporting precision oncology and improving patient outcomes through data-driven insights.

Diagnostic tools in respiratory medicine (Review).

Georgakopoulou VE, Spandidos DA, Corlateanu A

pubmed logopapersJul 1 2025
Recent advancements in diagnostic technologies have significantly transformed the landscape of respiratory medicine, aiming for early detection, improved specificity and personalized therapeutic strategies. Innovations in imaging such as multi-slice computed tomography (CT) scanners, high-resolution CT and magnetic resonance imaging (MRI) have revolutionized our ability to visualize and assess the structural and functional aspects of the respiratory system. These techniques are complemented by breakthroughs in molecular biology that have identified specific biomarkers and genetic determinants of respiratory diseases, enabling targeted diagnostic approaches. Additionally, functional tests including spirometry and exercise testing continue to provide valuable insights into pulmonary function and capacity. The integration of artificial intelligence is poised to further refine these diagnostic tools, enhancing their accuracy and efficiency. The present narrative review explores these developments and their impact on the management and outcomes of respiratory conditions, underscoring the ongoing shift towards more precise and less invasive diagnostic modalities in respiratory medicine.

Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.

Tushar FI, Vancoillie L, McCabe C, Kavuri A, Dahal L, Harrawood B, Fryling M, Zarei M, Sotoudeh-Paima S, Ho FC, Ghosh D, Harowicz MR, Tailor TD, Luo S, Segars WP, Abadi E, Lafata KJ, Lo JY, Samei E

pubmed logopapersJul 1 2025
Clinical imaging trials play a crucial role in advancing medical innovation but are often costly, inefficient, and ethically constrained. Virtual Imaging Trials (VITs) present a solution by simulating clinical trial components in a controlled, risk-free environment. The Virtual Lung Screening Trial (VLST), an in silico study inspired by the National Lung Screening Trial (NLST), illustrates the potential of VITs to expedite clinical trials, minimize risks to participants, and promote optimal use of imaging technologies in healthcare. This study aimed to show that a virtual imaging trial platform could investigate some key elements of a major clinical trial, specifically the NLST, which compared Computed tomography (CT) and chest radiography (CXR) for lung cancer screening. With simulated cancerous lung nodules, a virtual patient cohort of 294 subjects was created using XCAT human models. Each virtual patient underwent both CT and CXR imaging, with deep learning models, the AI CT-Reader and AI CXR-Reader, acting as virtual readers to perform recall patients with suspicion of lung cancer. The primary outcome was the difference in diagnostic performance between CT and CXR, measured by the Area Under the Curve (AUC). The AI CT-Reader showed superior diagnostic accuracy, achieving an AUC of 0.92 (95 % CI: 0.90-0.95) compared to the AI CXR-Reader's AUC of 0.72 (95 % CI: 0.67-0.77). Furthermore, at the same 94 % CT sensitivity reported by the NLST, the VLST specificity of 73 % was similar to the NLST specificity of 73.4 %. This CT performance highlights the potential of VITs to replicate certain aspects of clinical trials effectively, paving the way toward a safe and efficient method for advancing imaging-based diagnostics.
Page 1 of 20199 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.