Sort by:
Page 1 of 321 results

Deep Learning-Based Chronic Obstructive Pulmonary Disease Exacerbation Prediction Using Flow-Volume and Volume-Time Curve Imaging: Retrospective Cohort Study.

Jeon ET, Park H, Lee JK, Heo EY, Lee CH, Kim DK, Kim DH, Lee HW

pubmed logopapersMay 15 2025
Chronic obstructive pulmonary disease (COPD) is a common and progressive respiratory condition characterized by persistent airflow limitation and symptoms such as dyspnea, cough, and sputum production. Acute exacerbations (AE) of COPD (AE-COPD) are key determinants of disease progression; yet, existing predictive models relying mainly on spirometric measurements, such as forced expiratory volume in 1 second, reflect only a fraction of the physiological information embedded in respiratory function tests. Recent advances in artificial intelligence (AI) have enabled more sophisticated analyses of full spirometric curves, including flow-volume loops and volume-time curves, facilitating the identification of complex patterns associated with increased exacerbation risk. This study aimed to determine whether a predictive model that integrates clinical data and spirometry images with the use of AI improves accuracy in predicting moderate-to-severe and severe AE-COPD events compared to a clinical-only model. A retrospective cohort study was conducted using COPD registry data from 2 teaching hospitals from January 2004 to December 2020. The study included a total of 10,492 COPD cases, divided into a development cohort (6870 cases) and an external validation cohort (3622 cases). The AI-enhanced model (AI-PFT-Clin) used a combination of clinical variables (eg, history of AE-COPD, dyspnea, and inhaled treatments) and spirometry image data (flow-volume loop and volume-time curves). In contrast, the Clin model used only clinical variables. The primary outcomes were moderate-to-severe and severe AE-COPD events within a year of spirometry. In the external validation cohort, the AI-PFT-Clin model outperformed the Clin model, showing an area under the receiver operating characteristic curve of 0.755 versus 0.730 (P<.05) for moderate-to-severe AE-COPD and 0.713 versus 0.675 (P<.05) for severe AE-COPD. The AI-PFT-Clin model demonstrated reliable predictive capability across subgroups, including younger patients and those without previous exacerbations. Higher AI-PFT-Clin scores correlated with elevated AE-COPD risk (adjusted hazard ratio for Q4 vs Q1: 4.21, P<.001), with sustained predictive stability over a 10-year follow-up period. The AI-PFT-Clin model, by integrating clinical data with spirometry images, offers enhanced predictive accuracy for AE-COPD events compared to a clinical-only approach. This AI-based framework facilitates the early identification of high-risk individuals through the detection of physiological abnormalities not captured by conventional metrics. The model's robust performance and long-term predictive stability suggest its potential utility in proactive COPD management and personalized intervention planning. These findings highlight the promise of incorporating advanced AI techniques into routine COPD management, particularly in populations traditionally seen as lower risk, supporting improved management of COPD through tailored patient care.

Application of artificial intelligence medical imaging aided diagnosis system in the diagnosis of pulmonary nodules.

Yang Y, Wang P, Yu C, Zhu J, Sheng J

pubmed logopapersMay 14 2025
The application of artificial intelligence (AI) technology has realized the transformation of people's production and lifestyle, and also promoted the rapid development of the medical field. At present, the application of intelligence in the medical field is increasing. Using its advanced methods and technologies of AI, this paper aims to realize the integration of medical imaging-aided diagnosis system and AI, which is helpful to analyze and solve the loopholes and errors of traditional artificial diagnosis in the diagnosis of pulmonary nodules. Drawing on the principles and rules of image segmentation methods, the construction and optimization of a medical image-aided diagnosis system is carried out to realize the precision of the diagnosis system in the diagnosis of pulmonary nodules. In the diagnosis of pulmonary nodules carried out by traditional artificial and medical imaging-assisted diagnosis systems, 231 nodules with pathology or no change in follow-up for more than two years were also tested in 200 cases. The results showed that the AI software detected a total of 881 true nodules with a sensitivity of 99.10% (881/889). The radiologists detected 385 true nodules with a sensitivity of 43.31% (385/889). The sensitivity of AI software in detecting non-calcified nodules was significantly higher than that of radiologists (99.01% vs 43.30%, P < 0.001), and the difference was statistically significant.

Blockchain enabled collective and combined deep learning framework for COVID19 diagnosis.

Periyasamy S, Kaliyaperumal P, Thirumalaisamy M, Balusamy B, Elumalai T, Meena V, Jadoun VK

pubmed logopapersMay 13 2025
The rapid spread of SARS-CoV-2 has highlighted the need for intelligent methodologies in COVID-19 diagnosis. Clinicians face significant challenges due to the virus's fast transmission rate and the lack of reliable diagnostic tools. Although artificial intelligence (AI) has improved image processing, conventional approaches still rely on centralized data storage and training. This reliance increases complexity and raises privacy concerns, which hinder global data exchange. Therefore, it is essential to develop collaborative models that balance accuracy with privacy protection. This research presents a novel framework that combines blockchain technology with a combined learning paradigm to ensure secure data distribution and reduced complexity. The proposed Combined Learning Collective Deep Learning Blockchain Model (CLCD-Block) aggregates data from multiple institutions and leverages a hybrid capsule learning network for accurate predictions. Extensive testing with lung CT images demonstrates that the model outperforms existing models, achieving an accuracy exceeding 97%. Specifically, on four benchmark datasets, CLCD-Block achieved up to 98.79% Precision, 98.84% Recall, 98.79% Specificity, 98.81% F1-Score, and 98.71% Accuracy, showcasing its superior diagnostic capability. Designed for COVID-19 diagnosis, the CLCD-Block framework is adaptable to other applications, integrating AI, decentralized training, privacy protection, and secure blockchain collaboration. It addresses challenges in diagnosing chronic diseases, facilitates cross-institutional research and monitors infectious outbreaks. Future work will focus on enhancing scalability, optimizing real-time performance and adapting the model for broader healthcare datasets.

Development and validation of an early diagnosis model for severe mycoplasma pneumonia in children based on interpretable machine learning.

Xie S, Wu M, Shang Y, Tuo W, Wang J, Cai Q, Yuan C, Yao C, Xiang Y

pubmed logopapersMay 13 2025
Pneumonia is a major threat to the health of children, especially those under the age of five. Mycoplasma  pneumoniae infection is a core cause of pediatric pneumonia, and the incidence of severe mycoplasma pneumoniae pneumonia (SMPP) has increased in recent years. Therefore, there is an urgent need to establish an early warning model for SMPP to improve the prognosis of pediatric pneumonia. The study comprised 597 SMPP patients aged between 1 month and 18 years. Clinical data were selected through Lasso regression analysis, followed by the application of eight machine learning algorithms to develop early warning model. The accuracy of the model was assessed using validation and prospective cohort. To facilitate clinical assessment, the study simplified the indicators and constructed visualized simplified model. The clinical applicability of the model was evaluated by DCA and CIC curve. After variable selection, eight machine learning models were developed using age, sex and 21 serum indicators identified as predictive factors for SMPP. A Light Gradient Boosting Machine (LightGBM) model demonstrated strong performance, achieving AUC of 0.92 for prospective validation. The SHAP analysis was utilized to screen advantageous variables, which contains of serum S100A8/A9, tracheal computed tomography (CT), retinol-binding protein(RBP), platelet larger cell ratio(P-LCR) and CD4+CD25+Treg cell counts, for constructing a simplified model (SCRPT) to improve clinical applicability. The SCRPT diagnostic model exhibited favorable diagnostic efficacy (AUC > 0.8). Additionally, the study found that S100A8/A9 outperformed clinical inflammatory markers can also differentiate the severity of MPP. The SCRPT model consisting of five dominant variables (S100A8/A9, CT, RBP, PLCR and Treg cell) screened based on eight machine learning is expected to be a tool for early diagnosis of SMPP. S100A8/A9 can also be used as a biomarker for validity differentiation of SMPP when medical conditions are limited.

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

Hultenmo M, Pernbro J, Ahlin J, Bonnier M, Båth M

pubmed logopapersMay 13 2025
Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population. The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography. Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC<sub>VGC</sub>) values and associated confidence intervals (CI). Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results. The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

Real-world Evaluation of Computer-aided Pulmonary Nodule Detection Software Sensitivity and False Positive Rate.

El Alam R, Jhala K, Hammer MM

pubmed logopapersMay 12 2025
Evaluate the false positive rate (FPR) of nodule detection software in real-world use. A total of 250 nonenhanced chest computed tomography (CT) examinations were randomly selected from an academic institution and submitted to the ClearRead nodule detection system (Riverain Technologies). Detected findings were reviewed by a thoracic imaging fellow. Nodules were classified as true nodules, lymph nodes, or other findings (branching opacity, vessel, mucus plug, etc.), and FPR was recorded. FPR was compared with the initial published FPR in the literature. True diagnosis was based on pathology or follow-up stability. For cases with malignant nodules, we recorded whether malignancy was detected by clinical radiology report (which was performed without software assistance) and/or ClearRead. Twenty-one CTs were excluded due to a lack of thin-slice images, and 229 CTs were included. A total of 594 findings were reported by ClearRead, of which 362 (61%) were true nodules and 232 (39%) were other findings. Of the true nodules, 297 were solid nodules, of which 79 (27%) were intrapulmonary lymph nodes. The mean findings identified by ClearRead per scan was 2.59. ClearRead mean FPR was 1.36, greater than the published rate of 0.58 (P<0.0001). If we consider true lung nodules <6 mm as false positive, FPR is 2.19. A malignant nodule was present in 30 scans; ClearRead identified it in 26 (87%), and the clinical report identified it in 28 (93%) (P=0.32). In real-world use, ClearRead had a much higher FPR than initially reported but a similar sensitivity for malignant nodule detection compared with unassisted radiologists.

Promptable segmentation of CT lung lesions based on improved U-Net and Segment Anything model (SAM).

Yan W, Xu Y, Yan S

pubmed logopapersMay 11 2025
BackgroundComputed tomography (CT) is widely used in clinical diagnosis of lung diseases. The automatic segmentation of lesions in CT images aids in the development of intelligent lung disease diagnosis.ObjectiveThis study aims to address the issue of imprecise segmentation in CT images due to the blurred detailed features of lesions, which can easily be confused with surrounding tissues.MethodsWe proposed a promptable segmentation method based on an improved U-Net and Segment Anything model (SAM) to improve segmentation accuracy of lung lesions in CT images. The improved U-Net incorporates a multi-scale attention module based on a channel attention mechanism ECA (Efficient Channel Attention) to improve recognition of detailed feature information at edge of lesions; and a promptable clipping module to incorporate physicians' prior knowledge into the model to reduce background interference. Segment Anything model (SAM) has a strong ability to recognize lesions and pulmonary atelectasis or organs. We combine the two to improve overall segmentation performances.ResultsOn the LUAN16 dataset and a lung CT dataset provided by the Shanghai Chest Hospital, the proposed method achieves Dice coefficients of 80.12% and 92.06%, and Positive Predictive Values of 81.25% and 91.91%, which are superior to most existing mainstream segmentation methods.ConclusionThe proposed method can be used to improve segmentation accuracy of lung lesions in CT images, enhance automation level of existing computer-aided diagnostic systems, and provide more effective assistance to radiologists in clinical practice.

A systematic review and meta-analysis of the utility of quantitative, imaging-based approaches to predict radiation-induced toxicity in lung cancer patients.

Tong D, Midroni J, Avison K, Alnassar S, Chen D, Parsa R, Yariv O, Liu Z, Ye XY, Hope A, Wong P, Raman S

pubmed logopapersMay 11 2025
To conduct a systematic review and meta-analysis of the performance of radiomics, dosiomics and machine learning in generating toxicity prediction in thoracic radiotherapy. An electronic database search was conducted and dual-screened by independent authors to identify eligible studies for systematic review and meta-analysis. Data was extracted and study quality was assessed using TRIPOD for machine learning studies, RQS for Radiomics and RoB for dosiomics. 10,703 studies were identified, and 5252 entered screening. 106 studies including 23,373 patients were eligible for systematic review. Primary toxicity predicted was radiation pneumonitis (81), followed by esophagitis (12) and lymphopenia (4). Fourty-two studies studying radiation pneumonitis were eligible for meta-analysis, with pooled area-under-curve (AUC) of 0.82 (95% CI 0.79-0.85). Studies with machine learning had the best performance, with classical and deep learning models having similar performance. There is a trend towards an improvement of the performance of models with the year of publication. There is variability in study quality among the three study categories and dosiomic studies scored the highest among these. Publication bias was not observed. The majority of existing literature using radiomics, dosiomics and machine learning has focused on radiation pneumonitis prediction. Future research should focus on toxicity prediction of other organs at risk and the adoption of these models into clinical practice.

Magnetic Resonance Imaging in the Clinical Evaluation of Lung Disorders: Current Status and Future Prospects.

Wu L, Gao C, Wu T, Kong N, Zhang Z, Li J, Fan L, Xu M

pubmed logopapersMay 9 2025
The low proton density and high signal decay rate of pulmonary tissue have previously hampered the application of magnetic resonance imaging (MRI) in the clinical evaluation of lung disorders. With the continuing technical advances in scanners, coils, pulse sequences, and image postprocessing, pulmonary MRI can provide structural and functional information with faster imaging speed and improved image quality, which has shown potential to be an alternative and complementary diagnostic method to chest computed tomography (CT). Compared with CT, MRI does not involve ionizing radiation, making it particularly suitable for pediatric patients, pregnant women, and individuals requiring longitudinal monitoring. This narrative review focuses on recent advances in techniques and clinical applications for pulmonary MRI in lung diseases, including lung parenchymal and pulmonary vascular diseases. Future developments, including artificial intelligence-driven technological optimization and assisted diagnosis, hardware advancements, and clinical biomarkers validation, hold the potential to further enhance the clinical utility of pulmonary MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.

Harnessing Advanced Machine Learning Techniques for Microscopic Vessel Segmentation in Pulmonary Fibrosis Using Novel Hierarchical Phase-Contrast Tomography Images.

Vasudev P, Azimbagirad M, Aslani S, Xu M, Wang Y, Chapman R, Coleman H, Werlein C, Walsh C, Lee P, Tafforeau P, Jacob J

pubmed logopapersMay 9 2025
 Fibrotic lung disease is a progressive illness that causes scarring and ultimately respiratory failure, with irreversible damage by the time it is diagnosed on computed tomography imaging. Recent research postulates the role of the lung vasculature on the pathogenesis of the disease. With the recent development of high-resolution hierarchical phase-contrast tomography (HiP-CT), we have the potential to understand and detect changes in the lungs long before conventional imaging. However, to gain quantitative insight into vascular changes you first need to be able to segment the vessels before further downstream analysis can be conducted. Aside from this, HiP-CT generates large-volume, high-resolution data which is time-consuming and expensive to label.  This project aims to qualitatively assess the latest machine learning methods for vessel segmentation in HiP-CT data to enable label propagation as the first step for imaging biomarker discovery, with the goal to identify early-stage interstitial lung disease amenable to treatment, before fibrosis begins.  Semisupervised learning (SSL) has become a growing method to tackle sparsely labeled datasets due to its leveraging of unlabeled data. In this study, we will compare two SSL methods; Seg PL, based on pseudo-labeling, and MisMatch, using consistency regularization against state-of-the-art supervised learning method, nnU-Net, on vessel segmentation in sparsely labeled lung HiP-CT data.  On initial experimentation, both MisMatch and SegPL showed promising performance on qualitative review. In comparison with supervised learning, both MisMatch and SegPL showed better out-of-distribution performance within the same sample (different vessel morphology and texture vessels), though supervised learning provided more consistent segmentations for well-represented labels in the limited annotations.  Further quantitative research is required to better assess the generalizability of these findings, though they show promising first steps toward leveraging this novel data to tackle fibrotic lung disease.
Page 1 of 321 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.