Sort by:
Page 1 of 13127 results
Next

Acquisition and Reconstruction Techniques for Coronary CT Angiography: Current Status and Trends over the Past Decade.

Fukui R, Harashima S, Samejima W, Shimizu Y, Washizuka F, Kariyasu T, Nishikawa M, Yamaguchi H, Takeuchi H, Machida H

pubmed logopapersJul 1 2025
Coronary CT angiography (CCTA) has been widely used as a noninvasive modality for accurate assessment of coronary artery disease (CAD) in clinical settings. However, the following limitations of CCTA remain issues of interest: motion, stair-step, and blooming artifacts; suboptimal image noise; ionizing radiation exposure; administration of contrast medium; and complex imaging workflow. Various acquisition and reconstruction techniques have been introduced over the past decade to overcome these limitations. Low-tube-voltage acquisition using a high-output x-ray tube can reasonably reduce the contrast medium and radiation dose. Fast x-ray tube and gantry rotation, dual-source CT, and a motion-correction algorithm (MCA) can improve temporal resolution and reduce coronary motion artifacts. High-definition CT (HDCT), ultrahigh-resolution CT (UHRCT), and superresolution deep learning reconstruction (DLR) algorithms can improve the spatial resolution and delineation of the vessel lumen with coronary calcifications or stents by reducing blooming artifacts. Whole-heart coverage using area-detector CT can eliminate stair-step artifacts. The DLR algorithm can effectively reduce image noise and radiation dose while maintaining image quality, particularly during high-resolution acquisition using HDCT or UHRCT, during low-tube-voltage acquisition, or when imaging patients with a large body habitus. Automatic cardiac protocol selection, automatic optimal cardiac phase selection, and MCA can improve the imaging workflow for each CCTA examination. A sufficient understanding of current and novel acquisition and reconstruction techniques is important to enhance the clinical value of CCTA for noninvasive assessment of CAD. <sup>©</sup>RSNA, 2025 Supplemental material is available for this article.

Assessment of biventricular cardiac function using free-breathing artificial intelligence cine with motion correction: Comparison with standard multiple breath-holding cine.

Ran L, Yan X, Zhao Y, Yang Z, Chen Z, Jia F, Song X, Huang L, Xia L

pubmed logopapersJul 1 2025
To assess the image quality and biventricular function utilizing a free-breathing artificial intelligence cine method with motion correction (FB AI MOCO). A total of 72 participants (mean age 38.3 ± 15.4 years, 40 males) prospectively enrolled in this single-center, cross-sectional study underwent cine scans using standard breath-holding (BH) cine and FB AI MOCO cine at 3.0 Tesla. The image quality of the cine images was evaluated with a 5-point Ordinal Likert scale based on blood-pool to myocardium contrast, endocardial edge definition, and artifacts, and overall quality score was calculated by the equal weight average of all three criteria, apparent signal to noise ratio (aSNR), estimated contrast to noise ratio (eCNR) were assessed. Biventricular functional parameters including Left Ventricular (LV), Right Ventricular (RV) End-Diastolic Volume (EDV), End-Systolic Volume (ESV), Stroke Volume (SV), Ejection Fraction (EF), and LV End-Diastolic Mass (LVEDM) were also assessed. Comparison between two sequences was assessed using paired t-test and Wilcoxon signed-rank test, correlation using Pearson correlation. The agreement of quantitative parameters was assessed using intraclass correlation coefficient (ICC) and Bland-Altman analysis. P < 0.05 was statistically significant. The total acquisition time of the entire stack for FB AI MOCO cine (14.7 s ± 1.9 s) was notably shorter than that for standard BH cine (82.6 s ± 11.9 s, P < 0.001). The aSNR between FB AI MOCO cine and standard BH cine has no significantly difference (76.7 ± 20.7 vs. 79.8 ± 20.7, P = 0.193). The eCNR of FB AI MOCO cine was higher than standard BH cine (191.6 ± 54.0 vs. 155.8 ± 68.4, P < 0.001), as was the scores of blood-pool to myocardium contrast (4.6 ± 0.5 vs. 4.4 ± 0.6, P = 0.003). Qualitative scores including endocardial edge definition (4.2 ± 0.5 vs. 4.3 ± 0.7, P = 0.123), artifact presence (4.3 ± 0.6 vs. 4.1 ± 0.8, P = 0.085), and overall image quality (4.4 ± 0.4 vs. 4.3 ± 0.6, P = 0.448), showed no significant differences between the two methods. Representative RV and LV functional parameters - including RVEDV (102.2 (86.4, 120.4) ml vs. 104.0 (88.5, 120.3) ml, P = 0.294), RVEF (31.0 ± 11.1 % vs. 31.2 ± 11.0 %, P = 0.570), and LVEDV (106.2 (86.7, 131.3) ml vs. 105.8 (84.4, 130.3) ml, P = 0.450) - also did not differ significantly between the two methods. Strong correlations (r > 0.900) and excellent agreement (ICC > 0.900) were found for all biventricular functional parameters between the two sequences. In subgroups with reduced LVEF (<50 %, n = 24) or elevated heart rate (≥80  bpm, n = 17), no significant differences were observed in any biventricular functional metrics (P > 0.05 for all) between the two sequences. In comparison to multiple BH cine, the FB AI MOCO cine achieved comparable image quality and biventricular functional parameters with shorter scan times, suggesting its promising potential for clinical applications.

Impact of CT reconstruction algorithms on pericoronary and epicardial adipose tissue attenuation.

Xiao H, Wang X, Yang P, Wang L, Xi J, Xu J

pubmed logopapersJul 1 2025
This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adipose tissue (EAT). Furthermore, we propose to explore the feasibility of correcting the effects through fat threshold adjustment. A retrospective analysis was conducted on the imaging data of 134 patients who underwent coronary CT angiography (CCTA) between December 2023 and January 2024. These data were reconstructed into seven datasets using filtered back projection (FBP), ASIR-V at three different intensities (ASIR-V 30%, ASIR-V 50%, ASIR-V 70%), and DLIR at three different intensities (DLIR-L, DLIR-M, DLIR-H). Repeated-measures ANOVA was used to compare differences in fat, PCAT and EAT attenuation values among the reconstruction algorithms, and Bland-Altman plots were used to analyze the agreement between ASIR-V or DLIR and FBP algorithms in PCAT attenuation values. Compared to FBP, ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, DLIR-M, and DLIR-H significantly increased fat attenuation values (-103.91 ± 12.99 HU, -102.53 ± 12.68 HU, -101.14 ± 12.78 HU, -101.81 ± 12.41 HU, -100.87 ± 12.25 HU, -99.08 ± 12.00 HU vs. -105.95 ± 13.01 HU, all p < 0.001). When the fat threshold was set at -190 to -30 HU, ASIR-V and DLIR algorithms significantly increased PCAT and EAT attenuation values compared to FBP algorithm (all p < 0.05), with these values increasing as the reconstruction intensity level increased. After correction with a fat threshold of -200 to -35 HU for ASIR-V 30 %, -200 to -40 HU for ASIR-V 50 % and DLIR-L, and -200 to -45 HU for ASIR-V 70 %, DLIR-M, and DLIR-H, the mean differences in PCAT attenuation values between ASIR-V or DLIR and FBP algorithms decreased (-0.03 to 1.68 HU vs. 2.35 to 8.69 HU), and no significant difference was found in PCAT attenuation values between FBP and ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, and DLIR-M (all p > 0.05). Compared to the FBP algorithm, ASIR-V and DLIR algorithms increase PCAT and EAT attenuation values. Adjusting the fat threshold can mitigate the impact of ASIR-V and DLIR algorithms on PCAT attenuation values.

World of Forms: Deformable geometric templates for one-shot surface meshing in coronary CT angiography.

van Herten RLM, Lagogiannis I, Wolterink JM, Bruns S, Meulendijks ER, Dey D, de Groot JR, Henriques JP, Planken RN, Saitta S, Išgum I

pubmed logopapersJul 1 2025
Deep learning-based medical image segmentation and surface mesh generation typically involve a sequential pipeline from image to segmentation to meshes, often requiring large training datasets while making limited use of prior geometric knowledge. This may lead to topological inconsistencies and suboptimal performance in low-data regimes. To address these challenges, we propose a data-efficient deep learning method for direct 3D anatomical object surface meshing using geometric priors. Our approach employs a multi-resolution graph neural network that operates on a prior geometric template which is deformed to fit object boundaries of interest. We show how different templates may be used for the different surface meshing targets, and introduce a novel masked autoencoder pretraining strategy for 3D spherical data. The proposed method outperforms nnUNet in a one-shot setting for segmentation of the pericardium, left ventricle (LV) cavity and the LV myocardium. Similarly, the method outperforms other lumen segmentation operating on multi-planar reformatted images. Results further indicate that mesh quality is on par with or improves upon marching cubes post-processing of voxel mask predictions, while remaining flexible in the choice of mesh triangulation prior, thus paving the way for more accurate and topologically consistent 3D medical object surface meshing.

HALSR-Net: Improving CNN Segmentation of Cardiac Left Ventricle MRI with Hybrid Attention and Latent Space Reconstruction.

Fakhfakh M, Sarry L, Clarysse P

pubmed logopapersJul 1 2025
Accurate cardiac MRI segmentation is vital for detailed cardiac analysis, yet the manual process is labor-intensive and prone to variability. Despite advancements in MRI technology, there remains a significant need for automated methods that can reliably and efficiently segment cardiac structures. This paper introduces HALSR-Net, a novel multi-level segmentation architecture designed to improve the accuracy and reproducibility of cardiac segmentation from Cine-MRI acquisitions, focusing on the left ventricle (LV). The methodology consists of two main phases: first, the extraction of the region of interest (ROI) using a regression model that accurately predicts the location of a bounding box around the LV; second, the semantic segmentation step based on HALSR-Net architecture. This architecture incorporates a Hybrid Attention Pooling Module (HAPM) that merges attention and pooling mechanisms to enhance feature extraction and capture contextual information. Additionally, a reconstruction module leverages latent space features to further improve segmentation accuracy. Experiments conducted on an in-house clinical dataset and two public datasets (ACDC and LVQuan19) demonstrate that HALSR-Net outperforms state-of-the-art architectures, achieving up to 98% accuracy and F1-score for the segmentation of the LV cavity and myocardium. The proposed approach effectively addresses the limitations of existing methods, offering a more accurate and robust solution for cardiac MRI segmentation, thereby likely to improve cardiac function analysis and patient care.

Radiation and contrast dose reduction in coronary CT angiography for slender patients with 70 kV tube voltage and deep learning image reconstruction.

Ren Z, Shen L, Zhang X, He T, Yu N, Zhang M

pubmed logopapersJul 1 2025
To evaluate the radiation and contrast dose reduction potential of combining 70 kV with deep learning image reconstruction (DLIR) in coronary computed tomography angiography (CCTA) for slender patients with body-mass-index (BMI) ≤25 kg/m2. Sixty patients for CCTA were randomly divided into 2 groups: group A with 120 kV and contrast agent dose of 0.8 mL/kg, and group B with 70 kV and contrast agent dose of 0.5 mL/kg. Group A used adaptive statistical iterative reconstruction-V (ASIR-V) with 50% strength level (50%ASIR-V) while group B used 50% ASIR-V, DLIR of low level (DLIR-L), DLIR of medium level (DLIR-M), and DLIR of high level (DLIR-H) for image reconstruction. The CT values and SD values of coronary arteries and pericardial fat were measured, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The image quality was subjectively evaluated by 2 radiologists using a five-point scoring system. The effective radiation dose (ED) and contrast dose were calculated and compared. Group B significantly reduced radiation dose by 75.6% and contrast dose by 32.9% compared to group A. Group B exhibited higher CT values of coronary arteries than group A, and DLIR-L, DLIR-M, and DLIR-H in group B provided higher SNR values and CNR values and subjective scores, among which DLIR-H had the lowest noise and highest subjective scores. Using 70 kV combined with DLIR significantly reduces radiation and contrast dose while improving image quality in CCTA for slender patients with DLIR-H having the best effect on improving image quality. The 70 kV and DLIR-H may be used in CCTA for slender patients to significantly reduce radiation dose and contrast dose while improving image quality.

Coronary p-Graph: Automatic classification and localization of coronary artery stenosis from Cardiac CTA using DSA-based annotations.

Zhang Y, Zhang X, He Y, Zang S, Liu H, Liu T, Zhang Y, Chen Y, Shu H, Coatrieux JL, Tang H, Zhang L

pubmed logopapersJul 1 2025
Coronary artery disease (CAD) is a prevalent cardiovascular condition with profound health implications. Digital subtraction angiography (DSA) remains the gold standard for diagnosing vascular disease, but its invasiveness and procedural demands underscore the need for alternative diagnostic approaches. Coronary computed tomography angiography (CCTA) has emerged as a promising non-invasive method for accurately classifying and localizing coronary artery stenosis. However, the complexity of CCTA images and their dependence on manual interpretation highlight the essential role of artificial intelligence in supporting clinicians in stenosis detection. This paper introduces a novel framework, Coronaryproposal-based Graph Convolutional Networks (Coronary p-Graph), designed for the automated detection of coronary stenosis from CCTA scans. The framework transforms CCTA data into curved multi-planar reformation (CMPR) images that delineate the coronary artery centerline. After aligning the CMPR volume along this centerline, the entire vasculature is analyzed using a convolutional neural network (CNN) for initial feature extraction. Based on predefined criteria informed by prior knowledge, the model generates candidate stenotic segments, termed "proposals," which serve as graph nodes. The spatial relationships between nodes are then modeled as edges, constructing a graph representation that is processed using a graph convolutional network (GCN) for precise classification and localization of stenotic segments. All CCTA images were rigorously annotated by three expert radiologists, using DSA reports as the reference standard. This novel methodology offers diagnostic performance equivalent to invasive DSA based solely on non-invasive CCTA, potentially reducing the need for invasive procedures. The proposed method was evaluated on a retrospective dataset comprising 259 cases, each with paired CCTA and corresponding DSA reports. Quantitative analyses demonstrated the superior performance of our approach compared to existing methods, with the following metrics: accuracy of 0.844, specificity of 0.910, area under the receiver operating characteristic curve (AUC) of 0.74, and mean absolute error (MAE) of 0.157.

Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement.

Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Sasaki K, Funaki Y, Iio K, Ichikawa K, Izumi D, Okabe S, Nagata M, Sakuma H

pubmed logopapersJul 1 2025
Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR). We retrospectively analyzed 30 patients who underwent CT-LE using 320-row CT. The CT protocol comprised stress dynamic CT perfusion, coronary CT angiography, and CT-LE. CT-LE images were reconstructed using three different algorithms: SR-DLR, C-DLR, and hybrid IR. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scores are in terms of noise reduction, sharpness, visibility of scar and myocardial boarder, and overall image quality. Inter-observer differences in myocardial scar sizing in CT-LE by the three algorithms were also compared. SR-DLR significantly decreased image noise by 35% compared to C-DLR (median 6.2 HU, interquartile range [IQR] 5.6-7.2 HU vs 9.6 HU, IQR 8.4-10.7 HU; p < 0.001) and by 37% compared to hybrid IR (9.8 HU, IQR 8.5-12.0 HU; p < 0.001). SNR and CNR of CT-LE reconstructed using SR-DLR were significantly higher than with C-DLR (both p < 0.001) and hybrid IR (both p < 0.05). All qualitative image quality scores were higher with SR-DLR than those with C-DLR and hybrid IR (all p < 0.001). The inter-observer differences in scar sizing were reduced with SR-DLR and C-DLR compared with hybrid IR (both p = 0.02). SR-DLR reduces image noise and improves image quality of myocardial CT-LE compared with C-DLR and hybrid IR techniques and improves inter-observer reproducibility of scar sizing compared to hybrid IR. The SR-DLR approach has the potential to improve the assessment of myocardial scar by CT late enhancement.

Artificial intelligence-powered coronary artery disease diagnosis from SPECT myocardial perfusion imaging: a comprehensive deep learning study.

Hajianfar G, Gharibi O, Sabouri M, Mohebi M, Amini M, Yasemi MJ, Chehreghani M, Maghsudi M, Mansouri Z, Edalat-Javid M, Valavi S, Bitarafan Rajabi A, Salimi Y, Arabi H, Rahmim A, Shiri I, Zaidi H

pubmed logopapersJul 1 2025
Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is a well-established modality for noninvasive diagnostic assessment of coronary artery disease (CAD). However, the time-consuming and experience-dependent visual interpretation of SPECT images remains a limitation in the clinic. We aimed to develop advanced models to diagnose CAD using different supervised and semi-supervised deep learning (DL) algorithms and training strategies, including transfer learning and data augmentation, with SPECT-MPI and invasive coronary angiography (ICA) as standard of reference. A total of 940 patients who underwent SPECT-MPI were enrolled (281 patients included ICA). Quantitative perfusion SPECT (QPS) was used to extract polar maps of rest and stress states. We defined two different tasks, including (1) Automated CAD diagnosis with expert reader (ER) assessment of SPECT-MPI as reference, and (2) CAD diagnosis from SPECT-MPI based on reference ICA reports. In task 2, we used 6 strategies for training DL models. We implemented 13 different DL models along with 4 input types with and without data augmentation (WAug and WoAug) to train, validate, and test the DL models (728 models). One hundred patients with ICA as standard of reference (the same patients in task 1) were used to evaluate models per vessel and per patient. Metrics, such as the area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, specificity, precision, and balanced accuracy were reported. DeLong and pairwise Wilcoxon rank sum tests were respectively used to compare models and strategies after 1000 bootstraps on the test data for all models. We also compared the performance of our best DL model to ER's diagnosis. In task 1, DenseNet201 Late Fusion (AUC = 0.89) and ResNet152V2 Late Fusion (AUC = 0.83) models outperformed other models in per-vessel and per-patient analyses, respectively. In task 2, the best models for CAD prediction based on ICA were Strategy 3 (a combination of ER- and ICA-based diagnosis in train data), WoAug InceptionResNetV2 EarlyFusion (AUC = 0.71), and Strategy 5 (semi-supervised approach) WoAug ResNet152V2 EarlyFusion (AUC = 0.77) in per-vessel and per-patient analyses, respectively. Moreover, saliency maps showed that models could be helpful for focusing on relevant spots for decision making. Our study confirmed the potential of DL-based analysis of SPECT-MPI polar maps in CAD diagnosis. In the automation of ER-based diagnosis, models' performance was promising showing accuracy close to expert-level analysis. It demonstrated that using different strategies of data combination, such as including those with and without ICA, along with different training methods, like semi-supervised learning, can increase the performance of DL models. The proposed DL models could be coupled with computer-aided diagnosis systems and be used as an assistant to nuclear medicine physicians to improve their diagnosis and reporting, but only in the LAD territory. Not applicable.
Page 1 of 13127 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.