Sort by:
Page 1 of 18 results

Artificial Intelligence for Early Detection and Prognosis Prediction of Diabetic Retinopathy

Budi Susilo, Y. K., Yuliana, D., Mahadi, M., Abdul Rahman, S., Ariffin, A. E.

medrxiv logopreprintJun 20 2025
This review explores the transformative role of artificial intelligence (AI) in the early detection and prognosis prediction of diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients. AI, particularly deep learning and convolutional neural networks (CNNs), has demonstrated remarkable accuracy in analyzing retinal images, identifying early-stage DR with high sensitivity and specificity. These advancements address critical challenges such as intergrader variability in manual screening and the limited availability of specialists, especially in underserved regions. The integration of AI with telemedicine has further enhanced accessibility, enabling remote screening through portable devices and smartphone-based imaging. Economically, AI-based systems reduce healthcare costs by optimizing resource allocation and minimizing unnecessary referrals. Key findings highlight the dominance of Medicine (819 documents) and Computer Science (613 documents) in research output, reflecting the interdisciplinary nature of this field. Geographically, China, the United States, and India lead in contributions, underscoring global efforts to combat DR. Despite these successes, challenges such as algorithmic bias, data privacy, and the need for explainable AI (XAI) remain. Future research should focus on multi-center validation, diverse AI methodologies, and clinician-friendly tools to ensure equitable adoption. By addressing these gaps, AI can revolutionize DR management, reducing the global burden of diabetes-related blindness through early intervention and scalable solutions.

An Open-Source Generalizable Deep Learning Framework for Automated Corneal Segmentation in Anterior Segment Optical Coherence Tomography Imaging

Kandakji, L., Liu, S., Balal, S., Moghul, I., Allan, B., Tuft, S., Gore, D., Pontikos, N.

medrxiv logopreprintJun 20 2025
PurposeTo develop a deep learning model - Cornea nnU-Net Extractor (CUNEX) - for full-thickness corneal segmentation of anterior segment optical coherence tomography (AS-OCT) images and evaluate its utility in artificial intelligence (AI) research. MethodsWe trained and evaluated CUNEX using nnU-Net on 600 AS-OCT images (CSO MS-39) from 300 patients: 100 normal, 100 keratoconus (KC), and 100 Fuchs endothelial corneal dystrophy (FECD) eyes. To assess generalizability, we externally validated CUNEX on 1,168 AS-OCT images from an infectious keratitis dataset acquired from a different device (Casia SS-1000). We benchmarked CUNEX against two recent models, CorneaNet and ScLNet. We then applied CUNEX to our dataset of 194,599 scans from 37,499 patients as preprocessing for a classification model evaluating whether segmentation improves AI prediction, including age, sex, and disease staging (KC and FECD). ResultsCUNEX achieved Dice similarity coefficient (DSC) and intersection over union (IoU) scores ranging from 94-95% and 90-99%, respectively, across healthy, KC, and FECD eyes. This was similar to ScLNet (within 3%) but better than CorneaNet (8-35% lower). On external validation, CUNEX maintained high performance (DSC 83%; IoU 71%) while ScLNet (DSC 14%; IoU 8%) and CorneaNet (DSC 16%; IoU 9%) failed to generalize. Unexpectedly, segmentation minimally impacted classification accuracy except for sex prediction, where accuracy dropped from 81 to 68%, suggesting sex-related features may lie outside the cornea. ConclusionCUNEX delivers the first open-source generalizable corneal segmentation model using the latest framework, supporting its use in clinical analysis and AI workflows across diseases and imaging platforms. It is available at https://github.com/lkandakji/CUNEX.

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

Clinically Interpretable Deep Learning via Sparse BagNets for Epiretinal Membrane and Related Pathology Detection

Ofosu Mensah, S., Neubauer, J., Ayhan, M. S., Djoumessi Donteu, K. R., Koch, L. M., Uzel, M. M., Gelisken, F., Berens, P.

medrxiv logopreprintJun 6 2025
Epiretinal membrane (ERM) is a vitreoretinal interface disease that, if not properly addressed, can lead to vision impairment and negatively affect quality of life. For ERM detection and treatment planning, Optical Coherence Tomography (OCT) has become the primary imaging modality, offering non-invasive, high-resolution cross-sectional imaging of the retina. Deep learning models have also led to good ERM detection performance on OCT images. Nevertheless, most deep learning models cannot be easily understood by clinicians, which limits their acceptance in clinical practice. Post-hoc explanation methods have been utilised to support the uptake of models, albeit, with partial success. In this study, we trained a sparse BagNet model, an inherently interpretable deep learning model, to detect ERM in OCT images. It performed on par with a comparable black-box model and generalised well to external data. In a multitask setting, it also accurately predicted other changes related to the ERM pathophysiology. Through a user study with ophthalmologists, we showed that the visual explanations readily provided by the sparse BagNet model for its decisions are well-aligned with clinical expertise. We propose potential directions for clinical implementation of the sparse BagNet model to guide clinical decisions in practice.

Dual-stage AI system for Pathologist-Free Tumor Detectionand subtyping in Oral Squamous Cell Carcinoma

Chaudhary, N., Muddemanavar, P., Singh, D. K., Rai, A., Mishra, D., SV, S., Augustine, J., Chandra, A., Chaurasia, A., Ahmad, T.

medrxiv logopreprintJun 6 2025
BackgroundAccurate histological grading of oral squamous cell carcinoma (OSCC) is critical for prognosis and treatment planning. Current methods lack automation for OSCC detection, subtyping, and differentiation from high-risk pre-malignant conditions like oral submucous fibrosis (OSMF). Further, analysis of whole-slide image (WSI) analysis is time-consuming and variable, limiting consistency. We present a clinically relevant deep learning framework that leverages weakly supervised learning and attention-based multiple instance learning (MIL) to enable automated OSCC grading and early prediction of malignant transformation from OSMF. MethodsWe conducted a multi-institutional retrospective cohort study using a curated dataset of 1,925 whole-slide images (WSIs), including 1,586 OSCC cases stratified into well-, moderately-, and poorly-differentiated subtypes (WD, MD, and PD), 128 normal controls, and 211 OSMF and OSMF with OSCC cases. We developed a two-stage deep learning pipeline named OralPatho. In stage one, an attention-based multiple instance learning (MIL) model was trained to perform binary classification (normal vs OSCC). In stage two, a gated attention mechanism with top-K patch selection was employed to classify the OSCC subtypes. Model performance was assessed using stratified 3-fold cross-validation and external validation on an independent dataset. FindingsThe binary classifier demonstrated robust performance with a mean F1-score exceeding 0.93 across all validation folds. The multiclass model achieved consistent macro-F1 scores of 0.72, 0.70, and 0.68, along with AUCs of 0.79 for WD, 0.71 for MD, and 0.61 for PD OSCC subtypes. Model generalizability was validated using an independent external dataset. Attention maps reliably highlighted clinically relevant histological features, supporting the systems interpretability and diagnostic alignment with expert pathological assessment. InterpretationThis study demonstrates the feasibility of attention-based, weakly supervised learning for accurate OSCC grading from whole-slide images. OralPatho combines high diagnostic performance with real-time interpretability, making it a scalable solution for both advanced pathology labs and resource-limited settings.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.

Multi-class classification of central and non-central geographic atrophy using Optical Coherence Tomography

Siraz, S., Kamanda, H., Gholami, S., Nabil, A. S., Ong, S. S. Y., Alam, M. N.

medrxiv logopreprintMay 28 2025
PurposeTo develop and validate deep learning (DL)-based models for classifying geographic atrophy (GA) subtypes using Optical Coherence Tomography (OCT) scans across four clinical classification tasks. DesignRetrospective comparative study evaluating three DL architectures on OCT data with two experimental approaches. Subjects455 OCT volumes (258 Central GA [CGA], 74 Non-Central GA [NCGA], 123 no GA [NGA]) from 104 patients at Atrium Health Wake Forest Baptist. For GA versus age-related macular degeneration (AMD) classification, we supplemented our dataset with AMD cases from four public repositories. MethodsWe implemented ResNet50, MobileNetV2, and Vision Transformer (ViT-B/16) architectures using two approaches: (1) utilizing all B-scans within each OCT volume and (2) selectively using B-scans containing foveal regions. Models were trained using transfer learning, standardized data augmentation, and patient-level data splitting (70:15:15 ratio) for training, validation, and testing. Main Outcome MeasuresArea under the receiver operating characteristic curve (AUC-ROC), F1 score, and accuracy for each classification task (CGA vs. NCGA, CGA vs. NCGA vs. NGA, GA vs. NGA, and GA vs. other forms of AMD). ResultsViT-B/16 consistently outperformed other architectures across all classification tasks. For CGA versus NCGA classification, ViT-B/16 achieved an AUC-ROC of 0.728{+/-}0.083 and accuracy of 0.831{+/-}0.006 using selective B-scans. In GA versus NGA classification, ViT-B/16 attained an AUC-ROC of 0.950{+/-}0.002 and accuracy of 0.873{+/-}0.012 with selective B-scans. All models demonstrated exceptional performance in distinguishing GA from other AMD forms (AUC-ROC>0.998). For multi-class classification, ViT-B/16 achieved an AUC-ROC of 0.873{+/-}0.003 and accuracy of 0.751{+/-}0.002 using selective B-scans. ConclusionsOur DL approach successfully classifies GA subtypes with clinically relevant accuracy. ViT-B/16 demonstrates superior performance due to its ability to capture spatial relationships between atrophic regions and the foveal center. Focusing on B-scans containing foveal regions improved diagnostic accuracy while reducing computational requirements, better aligning with clinical practice workflows.

Multi-Task Deep Learning for Predicting Metabolic Syndrome from Retinal Fundus Images in a Japanese Health Checkup Dataset

Itoh, T., Nishitsuka, K., Fukuma, Y., Wada, S.

medrxiv logopreprintMay 14 2025
BackgroundRetinal fundus images provide a noninvasive window into systemic health, offering opportunities for early detection of metabolic disorders such as metabolic syndrome (METS). ObjectiveThis study aimed to develop a deep learning model to predict METS from fundus images obtained during routine health checkups, leveraging a multi-task learning approach. MethodsWe retrospectively analyzed 5,000 fundus images from Japanese health checkup participants. Convolutional neural network (CNN) models were trained to classify METS status, incorporating fundus-specific data augmentation strategies and auxiliary regression tasks targeting clinical parameters such as abdominal circumference (AC). Model performance was evaluated using validation accuracy, test accuracy, and the area under the receiver operating characteristic curve (AUC). ResultsModels employing fundus-specific augmentation demonstrated more stable convergence and superior validation accuracy compared to general-purpose augmentation. Incorporating AC as an auxiliary task further enhanced performance across architectures. The final ensemble model with test-time augmentation achieved a test accuracy of 0.696 and an AUC of 0.73178. ConclusionCombining multi-task learning, fundus-specific data augmentation, and ensemble prediction substantially improves deep learning-based METS classification from fundus images. This approach may offer a practical, noninvasive screening tool for metabolic syndrome in general health checkup settings.
Page 1 of 18 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.