Sort by:
Page 1 of 217 results
Next

Deep learning-based prediction of cardiopulmonary disease in retinal images of premature infants

Singh, P., Kumar, S., Tyagi, R., Young, B. K., Jordan, B. K., Scottoline, B., Evers, P. D., Ostmo, S., Coyner, A. S., Lin, W.-C., Gupta, A., Erdogmus, D., Chan, R. V. P., McCourt, E. A., Barry, J. S., McEvoy, C. T., Chiang, M. F., Campbell, J. P., Kalpathy-Cramer, J.

medrxiv logopreprintSep 19 2025
ImportanceBronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) are leading causes of morbidity and mortality in premature infants. ObjectiveTo determine whether images obtained as part of retinopathy of prematurity (ROP) screening might contain features associated with BPD and PH in infants, and whether a multi-modal model integrating imaging features with demographic risk factors might outperform a model based on demographic risk alone. DesignA deep learning model was used to study retinal images collected from patients enrolled in the multi-institutional Imaging and Informatics in Retinopathy of Prematurity (i-ROP) study. SettingSeven neonatal intensive care units. Participants493 infants at risk for ROP undergoing routine ROP screening examinations from 2012 to 2020. Images were limited to <=34 weeks post-menstrual age (PMA) so as to precede the clinical diagnosis of BPD or PH. ExposureBPD was diagnosed by the presence of an oxygen requirement at 36 weeks PMA, and PH was diagnosed by echocardiogram at 34 weeks. A support vector machine model was trained to predict BPD, or PH, diagnosis using: A) image features alone (extracted using Resnet18), B) demographics alone, C) image features concatenated with demographics. To reduce the possibility of confounding with ROP, secondary models were trained using only images without clinical signs of ROP. Main Outcome MeasureFor both BPD and PH, we report performance on a held-out testset (99 patients from the BPD cohort and 37 patients from the PH cohort), assessed by the area under receiver operating characteristic curve. ResultsFor BPD, the diagnostic accuracy of a multimodal model was 0.82 (95% CI: 0.72-0.90), compared to demographics 0.72 (0.60-0.82; P=0.07) or imaging 0.72 (0.61-0.82; P=0.002) alone. For PH, it was 0.91 (0.71-1.0) combined compared to 0.68 (0.43-0.9; P=0.04) for demographics and 0.91 (0.78-1.0; P=0.4) for imaging alone. These associations remained even when models were trained on the subset of images without any clinical signs of ROP. Conclusions and RelevanceRetinal images obtained during ROP screening can be used to predict the diagnosis of BPD and PH in preterm infants, which may lead to earlier diagnosis and avoid the need for invasive diagnostic testing in the future. KEY POINTSO_ST_ABSQuestionC_ST_ABSCan an artificial intelligence (AI) algorithm diagnose bronchopulmonary dysplasia (BPD) or pulmonary hypertension (PH) in retinal images in preterm infants obtained during retinopathy of prematurity (ROP) screening examinations? FindingsAI was able to predict the presence of both BPD and PH in retinal images with higher accuracy than what could be predicted based on baseline demographic risk alone. MeaningDeploying AI models using images obtained during retinopathy of prematurity screening could lead to earlier diagnosis and avoid the need for more invasive diagnostic testing.

Multimodal Machine Learning for Diagnosis of Multiple Sclerosis Using Optical Coherence Tomography in Pediatric Cases

Chen, C., Soltanieh, S., Rajapaksa, S., Khalvati, F., Yeh, E. A.

medrxiv logopreprintSep 14 2025
Background and ObjectivesIdentifying MS in children early and distinguishing it from other neuroinflammatory conditions of childhood is critical, as early therapeutic intervention can improve outcomes. The anterior visual pathway has been demonstrated to be of central importance in diagnostic considerations for MS and has recently been identified as a fifth topography in the McDonald Diagnostic Criteria for MS. Optical coherence tomography (OCT) provides high-resolution retinal imaging and reflects the structural integrity of the retinal nerve fiber and ganglion cell inner plexiform layers. Whether multimodal deep learning models can use OCT alone to diagnose pediatric MS (POMS) is unknown. MethodsWe analyzed 3D OCT scans collected prospectively through the Neuroinflammatory Registry of the Hospital for Sick Children (REB#1000005356). Raw macular and optic nerve head images, and 52 automatically segmented features were included. We evaluated three classification approaches: (1) deep learning models (e.g. ResNet, DenseNet) for representation learning followed by classical ML classifiers, (2) ML models trained on OCT-derived features, and (3) multimodal models combining both via early and late fusion. ResultsScans from individuals with POMS (onset 16.0 {+/-} 3.1 years, 51.0%F; 211 scans) and 29 children with non-inflammatory neurological conditions (13.1 {+/-} 4.0 years, 69.0%F, 52 scans) were included. The early fusion model achieved the highest performance (AUC: 0.87, F1: 0.87, Accuracy: 90%), outperforming both unimodal and late fusion models. The best unimodal feature-based model (SVC) yielded an AUC of 0.84, F1 of 0.85 and an accuracy of 85%, while the best image-based model (ResNet101 with Random Forest) achieved an AUC of 0.87, F1 of 0.79, and accuracy of 84%. Late fusion underperformed, reaching 82% accuracy but failing in the minority class. DiscussionMultimodal learning with early fusion significantly enhances diagnostic performance by combining spatial retinal information with clinically relevant structural features. This approach captures complementary patterns associated with MS pathology and shows promise as an AI-driven tool to support pediatric neuroinflammatory diagnosis.

Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model

Takayama, T., Uto, T., Tsuge, T., Kondo, Y., Tampo, H., Chiba, M., Kaburaki, T., Yanagi, Y., Takahashi, H.

medrxiv logopreprintAug 5 2025
BackgroundRetinal breaks are critical lesions that can lead to retinal detachment and vision loss if not detected and treated early. Automated and precise delineation of retinal breaks using ultra- widefield fundus (UWF) images remain a significant challenge in ophthalmology. ObjectiveThis study aimed to develop and validate a deep learning model based on the PraNet architecture for the accurate delineation of retinal breaks in UWF images, with a particular focus on segmentation performance in retinal break-positive cases. MethodsWe developed a deep learning segmentation model based on the PraNet architecture. This study utilized a dataset consisting of 8,083 cases and a total of 34,867 UWF images. Of these, 960 images contained retinal breaks, while the remaining 33,907 images did not. The dataset was split into 34,713 images for training, 81 for validation, and 73 for testing. The model was trained and validated on this dataset. Model performance was evaluated using both image-wise segmentation metrics (accuracy, precision, recall, Intersection over Union (IoU), dice score, centroid distance score) and lesion-wise detection metrics (sensitivity, positive predictive value). ResultsThe PraNet-based model achieved an accuracy of 0.996, a precision of 0.635, a recall of 0.756, an IoU of 0.539, a dice score of 0.652, and a centroid distance score of 0.081 for pixel-level detection of retinal breaks. The lesion-wise sensitivity was calculated as 0.885, and the positive predictive value (PPV) was 0.742. ConclusionsTo our knowledge, this is the first study to present pixel-level localization of retinal breaks using deep learning on UWF images. Our findings demonstrate that the PraNet-based model provides precise and robust pixel-level segmentation of retinal breaks in UWF images. This approach offers a clinically applicable tool for the precise delineation of retinal breaks, with the potential to improve patient outcomes. Future work should focus on external validation across multiple institutions and integration of additional annotation strategies to further enhance model performance and generalizability.

Deep learning aging marker from retinal images unveils sex-specific clinical and genetic signatures

Trofimova, O., Böttger, L., Bors, S., Pan, Y., Liefers, B., Beyeler, M. J., Presby, D. M., Bontempi, D., Hastings, J., Klaver, C. C. W., Bergmann, S.

medrxiv logopreprintJul 29 2025
Retinal fundus images offer a non-invasive window into systemic aging. Here, we fine-tuned a foundation model (RETFound) to predict chronological age from color fundus images in 71,343 participants from the UK Biobank, achieving a mean absolute error of 2.85 years. The resulting retinal age gap (RAG), i.e., the difference between predicted and chronological age, was associated with cardiometabolic traits, inflammation, cognitive performance, mortality, dementia, cancer, and incident cardiovascular disease. Genome-wide analyses identified genes related to longevity, metabolism, neurodegeneration, and age-related eye diseases. Sex-stratified models revealed consistent performance but divergent biological signatures: males had younger-appearing retinas and stronger links to metabolic syndrome, while in females, both model attention and genetic associations pointed to a greater involvement of retinal vasculature. Our study positions retinal aging as a biologically meaningful and sex-sensitive biomarker that can support more personalized approaches to risk assessment and aging-related healthcare.

SLOTMFound: Foundation-Based Diagnosis of Multiple Sclerosis Using Retinal SLO Imaging and OCT Thickness-maps

Esmailizadeh, R., Aghababaei, A., Mirzaei, S., Arian, R., Kafieh, R.

medrxiv logopreprintJul 15 2025
Multiple Sclerosis (MS) is a chronic autoimmune disorder of the central nervous system that can lead to significant neurological disability. Retinal imaging--particularly Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT)--provides valuable biomarkers for early MS diagnosis through non-invasive visualization of neurodegenerative changes. This study proposes a foundation-based bi-modal classification framework that integrates SLO images and OCT-derived retinal thickness maps for MS diagnosis. To facilitate this, we introduce two modality-specific foundation models--SLOFound and TMFound--fine-tuned from the RETFound-Fundus backbone using an independent dataset of 203 healthy eyes, acquired at Noor Ophthalmology Hospital with the Heidelberg Spectralis HRA+OCT system. This dataset, which contains only normal cases, was used exclusively for encoder adaptation and is entirely disjoint from the classification dataset. For the classification stage, we use a separate dataset comprising IR-SLO images from 32 MS patients and 70 healthy controls, collected at the Kashani Comprehensive MS Center in Isfahan, Iran. We first assess OCT-derived maps layer-wise and identify the Ganglion Cell-Inner Plexiform Layer (GCIPL) as the most informative for MS detection. All subsequent analyses utilize GCIPL thickness maps in conjunction with SLO images. Experimental evaluations on the MS classification dataset demonstrate that our foundation-based bi-modal model outperforms unimodal variants and a prior ResNet-based state-of-the-art model, achieving a classification accuracy of 97.37%, with perfect sensitivity (100%). These results highlight the effectiveness of leveraging pre-trained foundation models, even when fine-tuned on limited data, to build robust, efficient, and generalizable diagnostic tools for MS in medical imaging contexts where labeled datasets are often scarce.

Automated Deep Learning-Based 3D-to-2D Segmentation of Geographic Atrophy in Optical Coherence Tomography Data

Al-khersan, H., Oakley, J. D., Russakoff, D. B., Cao, J. A., Saju, S. M., Zhou, A., Sodhi, S. K., Pattathil, N., Choudhry, N., Boyer, D. S., Wykoff, C. C.

medrxiv logopreprintJul 7 2025
PurposeWe report on a deep learning-based approach to the segmentation of geographic atrophy (GA) in patients with advanced age-related macular degeneration (AMD). MethodThree-dimensional (3D) optical coherence tomography (OCT) data was collected from two instruments at two different retina practices. This totaled 367 and 348 volumes, respectively, of routinely collected clinical data. For all data, the accuracy of a 3D-to-2D segmentation model was assessed relative to ground-truth manual labeling. ResultsDice Similarity Scores (DSC) averaged 0.824 and 0.826 for each data set. Correlations (r2) between manual and automated areas were 0.883 and 0.906, respectively. The inclusion of near Infra-red imagery as an additional information channel to the algorithm did not notably improve performance. ConclusionAccurate assessment of GA in real-world clinical OCT data can be achieved using deep learning. In the advent of therapeutics to slow the rate of GA progression, reliable, automated assessment is a clinical objective and this work validates one such method.

Explainable machine learning for post PKR surgery follow-up

Soubeiran, C., Vilbert, M., Memmi, B., Georgeon, C., Borderie, V., Chessel, A., Plamann, K.

medrxiv logopreprintJul 5 2025
Photorefractive Keratectomy (PRK) is a widely used laser-assisted refractive surgical technique. In some cases, it leads to temporary subepithelial inflammation or fibrosis linked to visual haze. There are to our knowledge no physics based and quantitative tools to monitor these symptoms. We here present a comprehensive machine learning-based algorithm for the detection of fibrosis based on spectral domain optical coherence tomography images recorded in vivo on standard clinical devices. Because of the rarity of these phenomena, we trained the model on corneas presenting Fuchs dystrophy causing similar, but permanent, fibrosis symptoms, and applied it to images from patients who have undergone PRK surgery. Our study shows that the model output (probability of Fuchs dystrophy classification) provides a quantified and explainable indicator of corneal healing for post-operative follow-up.

Quantification of Optical Coherence Tomography Features in >3500 Patients with Inherited Retinal Disease Reveals Novel Genotype-Phenotype Associations

Woof, W. A., de Guimaraes, T. A. C., Al-Khuzaei, S., Daich Varela, M., Shah, M., Naik, G., Sen, S., Bagga, P., Chan, Y. W., Mendes, B. S., Lin, S., Ghoshal, B., Liefers, B., Fu, D. J., Georgiou, M., da Silva, A. S., Nguyen, Q., Liu, Y., Fujinami-Yokokawa, Y., Sumodhee, D., Furman, J., Patel, P. J., Moghul, I., Moosajee, M., Sallum, J., De Silva, S. R., Lorenz, B., Herrmann, P., Holz, F. G., Fujinami, K., Webster, A. R., Mahroo, O. A., Downes, S. M., Madhusudhan, S., Balaskas, K., Michaelides, M., Pontikos, N.

medrxiv logopreprintJul 3 2025
PurposeTo quantify spectral-domain optical coherence tomography (SD-OCT) images cross-sectionally and longitudinally in a large cohort of molecularly characterized patients with inherited retinal disease (IRDs) from the UK. DesignRetrospective study of imaging data. ParticipantsPatients with a clinical and molecularly confirmed diagnosis of IRD who have undergone macular SD-OCT imaging at Moorfields Eye Hospital (MEH) between 2011 and 2019. We retrospectively identified 4,240 IRD patients from the MEH database (198 distinct IRD genes), including 69,664 SD-OCT macular volumes. MethodsEight features of interest were defined: retina, fovea, intraretinal cystic spaces (ICS), subretinal fluid (SRF), subretinal hyper-reflective material (SHRM), pigment epithelium detachment (PED), ellipsoid zone loss (EZ-loss) and retinal pigment epithelium loss (RPE-loss). Manual annotations of five b-scans per SD-OCT volume was performed for the retinal features by four graders based on a defined grading protocol. A total of 1,749 b-scans from 360 SD-OCT volumes across 275 patients were annotated for the eight retinal features for training and testing of a neural-network-based segmentation model, AIRDetect-OCT, which was then applied to the entire imaging dataset. Main Outcome MeasuresPerformance of AIRDetect-OCT, comparing to inter-grader agreement was evaluated using Dice score on a held-out dataset. Feature prevalence, volume and area were analysed cross-sectionally and longitudinally. ResultsThe inter-grader Dice score for manual segmentation was [&ge;]90% for retina, ICS, SRF, SHRM and PED, >77% for both EZ-loss and RPE-loss. Model-grader agreement was >80% for segmentation of retina, ICS, SRF, SHRM, and PED, and >68% for both EZ-loss and RPE-loss. Automatic segmentation was applied to 272,168 b-scans across 7,405 SD-OCT volumes from 3,534 patients encompassing 176 unique genes. Accounting for age, male patients exhibited significantly more EZ-loss (19.6mm2 vs 17.9mm2, p<2.8x10-4) and RPE-loss (7.79mm2 vs 6.15mm2, p<3.2x10-6) than females. RPE-loss was significantly higher in Asian patients than other ethnicities (9.37mm2 vs 7.29mm2, p<0.03). ICS average total volume was largest in RS1 (0.47mm3) and NR2E3 (0.25mm3), SRF in BEST1 (0.21mm3) and PED in EFEMP1 (0.34mm3). BEST1 and PROM1 showed significantly different patterns of EZ-loss (p<10-4) and RPE-loss (p<0.02) comparing the dominant to the recessive forms. Sectoral analysis revealed significantly increased EZ-loss in the inferior quadrant compared to superior quadrant for RHO ({Delta}=-0.414 mm2, p=0.036) and EYS ({Delta}=-0.908 mm2, p=1.5x10-4). In ABCA4 retinopathy, more severe genotypes (group A) were associated with faster progression of EZ-loss (2.80{+/-}0.62 mm2/yr), whilst the p.(Gly1961Glu) variant (group D) was associated with slower progression (0.56 {+/-}0.18 mm2/yr). There were also sex differences within groups with males in group A experiencing significantly faster rates of progression of RPE-loss (2.48 {+/-}1.40 mm2/yr vs 0.87 {+/-}0.62 mm2/yr, p=0.047), but lower rates in groups B, C, and D. ConclusionsAIRDetect-OCT, a novel deep learning algorithm, enables large-scale OCT feature quantification in IRD patients uncovering cross-sectional and longitudinal phenotype correlations with demographic and genotypic parameters.

Clinician-Led Code-Free Deep Learning for Detecting Papilloedema and Pseudopapilloedema Using Optic Disc Imaging

Shenoy, R., Samra, G. S., Sekhri, R., Yoon, H.-J., Teli, S., DeSilva, I., Tu, Z., Maconachie, G. D., Thomas, M. G.

medrxiv logopreprintJun 26 2025
ImportanceDifferentiating pseudopapilloedema from papilloedema is challenging, but critical for prompt diagnosis and to avoid unnecessary invasive procedures. Following diagnosis of papilloedema, objectively grading severity is important for determining urgency of management and therapeutic response. Automated machine learning (AutoML) has emerged as a promising tool for diagnosis in medical imaging and may provide accessible opportunities for consistent and accurate diagnosis and severity grading of papilloedema. ObjectiveThis study evaluates the feasibility of AutoML models for distinguishing the presence and severity of papilloedema using near infrared reflectance images (NIR) obtained from standard optical coherence tomography (OCT), comparing the performance of different AutoML platforms. Design, setting and participantsA retrospective cohort study was conducted using data from University Hospitals of Leicester, NHS Trust. The study involved 289 adults and children patients (813 images) who underwent optic nerve head-centred OCT imaging between 2021 and 2024. The dataset included patients with normal optic discs (69 patients, 185 images), papilloedema (135 patients, 372 images), and optic disc drusen (ODD) (85 patients, 256 images). AutoML platforms - Amazon Rekognition, Medic Mind (MM) and Google Vertex were evaluated for their ability to classify and grade papilloedema severity. Main outcomes and measuresTwo classification tasks were performed: (1) distinguishing papilloedema from normal discs and ODD; (2) grading papilloedema severity (mild/moderate vs. severe). Model performance was evaluated using area under the curve (AUC), precision, recall, F1 score, and confusion matrices for all six models. ResultsAmazon Rekognition outperformed the other platforms, achieving the highest AUC (0.90) and F1 score (0.81) in distinguishing papilloedema from normal/ODD. For papilloedema severity grading, Amazon Rekognition also performed best, with an AUC of 0.90 and F1 score of 0.79. Google Vertex and Medic Mind demonstrated good performance but had slightly lower accuracy and higher misclassification rates. Conclusions and relevanceThis evaluation of three widely available AutoML platforms using NIR images obtained from standard OCT shows promise in distinguishing and grading papilloedema. These models provide an accessible, scalable solution for clinical teams without coding expertise to feasibly develop intelligent diagnostic systems to recognise and characterise papilloedema. Further external validation and prospective testing is needed to confirm their clinical utility and applicability in diverse settings. Key PointsQuestion: Can clinician-led, code-free deep learning models using automated machine learning (AutoML) accurately differentiate papilloedema from pseudopapilloedema using optic disc imaging? Findings: Three widely available AutoML platforms were used to develop models that successfully distinguish the presence and severity of papilloedema on optic disc imaging, with Amazon Rekognition demonstrating the highest performance. Meaning: AutoML may assist clinical teams, even those with limited coding expertise, in diagnosing papilloedema, potentially reducing the need for invasive investigations.

Artificial Intelligence for Early Detection and Prognosis Prediction of Diabetic Retinopathy

Budi Susilo, Y. K., Yuliana, D., Mahadi, M., Abdul Rahman, S., Ariffin, A. E.

medrxiv logopreprintJun 20 2025
This review explores the transformative role of artificial intelligence (AI) in the early detection and prognosis prediction of diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients. AI, particularly deep learning and convolutional neural networks (CNNs), has demonstrated remarkable accuracy in analyzing retinal images, identifying early-stage DR with high sensitivity and specificity. These advancements address critical challenges such as intergrader variability in manual screening and the limited availability of specialists, especially in underserved regions. The integration of AI with telemedicine has further enhanced accessibility, enabling remote screening through portable devices and smartphone-based imaging. Economically, AI-based systems reduce healthcare costs by optimizing resource allocation and minimizing unnecessary referrals. Key findings highlight the dominance of Medicine (819 documents) and Computer Science (613 documents) in research output, reflecting the interdisciplinary nature of this field. Geographically, China, the United States, and India lead in contributions, underscoring global efforts to combat DR. Despite these successes, challenges such as algorithmic bias, data privacy, and the need for explainable AI (XAI) remain. Future research should focus on multi-center validation, diverse AI methodologies, and clinician-friendly tools to ensure equitable adoption. By addressing these gaps, AI can revolutionize DR management, reducing the global burden of diabetes-related blindness through early intervention and scalable solutions.
Page 1 of 217 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.