Sort by:
Page 1 of 212 results
Next

Comparative Analysis of Multimodal Large Language Models GPT-4o and o1 vs Clinicians in Clinical Case Challenge Questions

Jung, J., Kim, H., Bae, S., Park, J. Y.

medrxiv logopreprintJun 23 2025
BackgroundGenerative Pre-trained Transformer 4 (GPT-4) has demonstrated strong performance in standardized medical examinations but has limitations in real-world clinical settings. The newly released multimodal GPT-4o model, which integrates text and image inputs to enhance diagnostic capabilities, and the multimodal o1 model, which incorporates advanced reasoning, may address these limitations. ObjectiveThis study aimed to compare the performance of GPT-4o and o1 against clinicians in real-world clinical case challenges. MethodsThis retrospective, cross-sectional study used Medscape case challenge questions from May 2011 to June 2024 (n = 1,426). Each case included text and images of patient history, physical examination findings, diagnostic test results, and imaging studies. Clinicians were required to choose one answer from among multiple options, with the most frequent response defined as the clinicians decision. Data-based decisions were made using GPT models (3.5 Turbo, 4 Turbo, 4 Omni, and o1) to interpret the text and images, followed by a process to provide a formatted answer. We compared the performances of the clinicians and GPT models using Mixed-effects logistic regression analysis. ResultsOf the 1,426 questions, clinicians achieved an overall accuracy of 85.0%, whereas GPT-4o and o1 demonstrated higher accuracies of 88.4% and 94.3% (mean difference 3.4%; P = .005 and mean difference 9.3%; P < .001), respectively. In the multimodal performance analysis, which included cases involving images (n = 917), GPT-4o achieved an accuracy of 88.3%, and o1 achieved 93.9%, both significantly outperforming clinicians (mean difference 4.2%; P = .005 and mean difference 9.8%; P < .001). o1 showed the highest accuracy across all question categories, achieving 92.6% in diagnosis (mean difference 14.5%; P < .001), 97.0% in disease characteristics (mean difference 7.2%; P < .001), 92.6% in examination (mean difference 7.3%; P = .002), and 94.8% in treatment (mean difference 4.3%; P = .005), consistently outperforming clinicians. In terms of medical specialty, o1 achieved 93.6% accuracy in internal medicine (mean difference 10.3%; P < .001), 96.6% in major surgery (mean difference 9.2%; P = .030), 97.3% in psychiatry (mean difference 10.6%; P = .030), and 95.4% in minor specialties (mean difference 10.0%; P < .001), significantly surpassing clinicians. Across five trials, GPT-4o and o1 provided the correct answer 5/5 times in 86.2% and 90.7% of the cases, respectively. ConclusionsThe GPT-4o and o1 models achieved higher accuracy than clinicians in clinical case challenge questions, particularly in disease diagnosis. The GPT-4o and o1 could serve as valuable tools to assist healthcare professionals in clinical settings.

Assessing accuracy and legitimacy of multimodal large language models on Japan Diagnostic Radiology Board Examination

Hirano, Y., Miki, S., Yamagishi, Y., Hanaoka, S., Nakao, T., Kikuchi, T., Nakamura, Y., Nomura, Y., Yoshikawa, T., Abe, O.

medrxiv logopreprintJun 23 2025
PurposeTo assess and compare the accuracy and legitimacy of multimodal large language models (LLMs) on the Japan Diagnostic Radiology Board Examination (JDRBE). Materials and methodsThe dataset comprised questions from JDRBE 2021, 2023, and 2024, with ground-truth answers established through consensus among multiple board-certified diagnostic radiologists. Questions without associated images and those lacking unanimous agreement on answers were excluded. Eight LLMs were evaluated: GPT-4 Turbo, GPT-4o, GPT-4.5, GPT-4.1, o3, o4-mini, Claude 3.7 Sonnet, and Gemini 2.5 Pro. Each model was evaluated under two conditions: with inputting images (vision) and without (text-only). Performance differences between the conditions were assessed using McNemars exact test. Two diagnostic radiologists (with 2 and 18 years of experience) independently rated the legitimacy of responses from four models (GPT-4 Turbo, Claude 3.7 Sonnet, o3, and Gemini 2.5 Pro) using a five-point Likert scale, blinded to model identity. Legitimacy scores were analyzed using Friedmans test, followed by pairwise Wilcoxon signed-rank tests with Holm correction. ResultsThe dataset included 233 questions. Under the vision condition, o3 achieved the highest accuracy at 72%, followed by o4-mini (70%) and Gemini 2.5 Pro (70%). Under the text-only condition, o3 topped the list with an accuracy of 67%. Addition of image input significantly improved the accuracy of two models (Gemini 2.5 Pro and GPT-4.5), but not the others. Both o3 and Gemini 2.5 Pro received significantly higher legitimacy scores than GPT-4 Turbo and Claude 3.7 Sonnet from both raters. ConclusionRecent multimodal LLMs, particularly o3 and Gemini 2.5 Pro, have demonstrated remarkable progress on JDRBE questions, reflecting their rapid evolution in diagnostic radiology. Secondary abstract Eight multimodal large language models were evaluated on the Japan Diagnostic Radiology Board Examination. OpenAIs o3 and Google DeepMinds Gemini 2.5 Pro achieved high accuracy rates (72% and 70%) and received good legitimacy scores from human raters, demonstrating steady progress.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

Clinically reported covert cerebrovascular disease and risk of neurological disease: a whole-population cohort of 395,273 people using natural language processing

Iveson, M. H., Mukherjee, M., Davidson, E. M., Zhang, H., Sherlock, L., Ball, E. L., Mair, G., Hosking, A., Whalley, H., Poon, M. T. C., Wardlaw, J. M., Kent, D., Tobin, R., Grover, C., Alex, B., Whiteley, W. N.

medrxiv logopreprintJun 13 2025
ImportanceUnderstanding the relevance of covert cerebrovascular disease (CCD) for later health will allow clinicians to more effectively monitor and target interventions. ObjectiveTo examine the association between clinically reported CCD, measured using natural language processing (NLP), and subsequent disease risk. Design, Setting and ParticipantsWe conducted a retrospective e-cohort study using linked health record data. From all people with clinical brain imaging in Scotland from 2010 to 2018, we selected people with no prior hospitalisation for neurological disease. The data were analysed from March 2024 to June 2025. ExposureFour phenotypes were identified with NLP of imaging reports: white matter hypoattenuation or hyperintensities (WMH), lacunes, cortical infarcts and cerebral atrophy. Main outcomes and measuresHazard ratios (aHR) for stroke, dementia, and Parkinsons disease (conditions previously associated with CCD), epilepsy (a brain-based control condition) and colorectal cancer (a non-brain control condition), adjusted for age, sex, deprivation, region, scan modality, and pre-scan healthcare, were calculated for each phenotype. ResultsFrom 395,273 people with brain imaging and no history of neurological disease, 145,978 (37%) had [&ge;]1 phenotype. For each phenotype, the aHR of any stroke was: WMH 1.4 (95%CI: 1.3-1.4), lacunes 1.6 (1.5-1.6), cortical infarct 1.7 (1.6-1.8), and cerebral atrophy 1.1 (1.0-1.1). The aHR of any dementia was: WMH, 1.3 (1.3-1.3), lacunes, 1.0 (0.9-1.0), cortical infarct 1.1 (1.0-1.1) and cerebral atrophy 1.7 (1.7-1.7). The aHR of Parkinsons disease was, in people with a report of: WMH 1.1 (1.0-1.2), lacunes 1.1 (0.9-1.2), cortical infarct 0.7 (0.6-0.9) and cerebral atrophy 1.4 (1.3-1.5). The aHRs between CCD phenotypes and epilepsy and colorectal cancer overlapped the null. Conclusions and RelevanceNLP identified CCD and atrophy phenotypes from routine clinical image reports, and these had important associations with future stroke, dementia and Parkinsons disease. Prevention of neurological disease in people with CCD should be a priority for healthcare providers and policymakers. Key PointsO_ST_ABSQuestionC_ST_ABSAre measures of Covert Cerebrovascular Disease (CCD) associated with the risk of subsequent disease (stroke, dementia, Parkinsons disease, epilepsy, and colorectal cancer)? FindingsThis study used a validated NLP algorithm to identify CCD (white matter hypoattenuation/hyperintensities, lacunes, cortical infarcts) and cerebral atrophy from both MRI and computed tomography (CT) imaging reports generated during routine healthcare in >395K people in Scotland. In adjusted models, we demonstrate higher risk of dementia (particularly Alzheimers disease) in people with atrophy, and higher risk of stroke in people with cortical infarcts. However, associations with an age-associated control outcome (colorectal cancer) were neutral, supporting a causal relationship. It also highlights differential associations between cerebral atrophy and dementia and cortical infarcts and stroke risk. MeaningCCD or atrophy on brain imaging reports in routine clinical practice is associated with a higher risk of stroke or dementia. Evidence is needed to support treatment strategies to reduce this risk. NLP can identify these important, otherwise uncoded, disease phenotypes, allowing research at scale into imaging-based biomarkers of dementia and stroke.

Interpretable Machine Learning based Detection of Coeliac Disease

Jaeckle, F., Bryant, R., Denholm, J., Romero Diaz, J., Schreiber, B., Shenoy, V., Ekundayomi, D., Evans, S., Arends, M., Soilleux, E.

medrxiv logopreprintJun 4 2025
BackgroundCoeliac disease, an autoimmune disorder affecting approximately 1% of the global population, is typically diagnosed on a duodenal biopsy. However, inter-pathologist agreement on coeliac disease diagnosis is only around 80%. Existing machine learning solutions designed to improve coeliac disease diagnosis often lack interpretability, which is essential for building trust and enabling widespread clinical adoption. ObjectiveTo develop an interpretable AI model capable of segmenting key histological structures in duodenal biopsies, generating explainable segmentation masks, estimating intraepithelial lymphocyte (IEL)-to-enterocyte and villus-to-crypt ratios, and diagnosing coeliac disease. DesignSemantic segmentation models were trained to identify villi, crypts, IELs, and enterocytes using 49 annotated 2048x2048 patches at 40x magnification. IEL-to-enterocyte and villus-to-crypt ratios were calculated from segmentation masks, and a logistic regression model was trained on 172 images to diagnose coeliac disease based on these ratios. Evaluation was performed on an independent test set of 613 duodenal biopsy scans from a separate NHS Trust. ResultsThe villus-crypt segmentation model achieved a mean PR AUC of 80.5%, while the IEL-enterocyte model reached a PR AUC of 82%. The diagnostic model classified WSIs with 96% accuracy, 86% positive predictive value, and 98% negative predictive value on the independent test set. ConclusionsOur interpretable AI models accurately segmented key histological structures and diagnosed coeliac disease in unseen WSIs, demonstrating strong generalization performance. These models provide pathologists with reliable IEL-to-enterocyte and villus-to-crypt ratio estimates, enhancing diagnostic accuracy. Interpretable AI solutions like ours are essential for fostering trust among healthcare professionals and patients, complementing existing black-box methodologies. What is already known on this topicPathologist concordance in diagnosing coeliac disease from duodenal biopsies is consistently reported to be below 80%, highlighting diagnostic variability and the need for improved methods. Several recent studies have leveraged artificial intelligence (AI) to enhance coeliac disease diagnosis. However, most of these models operate as "black boxes," offering limited interpretability and transparency. The lack of explainability in AI-driven diagnostic tools prevents widespread adoption by healthcare professionals and reduces patient trust. What this study addsThis study presents an interpretable semantic segmentation algorithm capable of detecting the four key histological structures essential for diagnosing coeliac disease: crypts, villi, intraepithelial lymphocytes (IELs), and enterocytes. The model accurately estimates the IEL-to-enterocyte ratio and the villus-to-crypt ratio, the latter being an indicator of villous atrophy and crypt hyperplasia, thereby providing objective, reproducible metrics for diagnosis. The segmentation outputs allow for transparent, explainable decision-making, supporting pathologists in coeliac disease diagnosis with improved accuracy and confidence. This study presents an AI model that automates the estimation of the IEL-to-enterocyte ratio--a labour-intensive task currently performed manually by pathologists in limited biopsy regions. By minimising diagnostic variability and alleviating time constraints for pathologists, the model provides an efficient and practical solution to streamline the diagnostic workflow. Tested on an independent dataset from a previously unseen source, the model demonstrates explainability and generalizability, enhancing trust and encouraging adoption in routine clinical practice. Furthermore, this approach could set a new standard for AI-assisted duodenal biopsy evaluation, paving the way for the development of interpretable AI tools in pathology to address the critical challenges of limited pathologist availability and diagnostic inconsistencies.

A Comparative Performance Analysis of Regular Expressions and an LLM-Based Approach to Extract the BI-RADS Score from Radiological Reports

Dennstaedt, F., Lerch, L., Schmerder, M., Cihoric, N., Cerghetti, G. M., Gaio, R., Bonel, H., Filchenko, I., Hastings, J., Dammann, F., Aebersold, D. M., von Tengg, H., Nairz, K.

medrxiv logopreprintJun 2 2025
BackgroundDifferent Natural Language Processing (NLP) techniques have demonstrated promising results for data extraction from radiological reports. Both traditional rule-based methods like regular expressions (Regex) and modern Large Language Models (LLMs) can extract structured information. However, comparison between these approaches for extraction of specific radiological data elements has not been widely conducted. MethodsWe compared accuracy and processing time between Regex and LLM-based approaches for extracting BI-RADS scores from 7,764 radiology reports (mammography, ultrasound, MRI, and biopsy). We developed a rule-based algorithm using Regex patterns and implemented an LLM-based extraction using the Rombos-LLM-V2.6-Qwen-14b model. A ground truth dataset of 199 manually classified reports was used for evaluation. ResultsThere was no statistically significant difference in the accuracy in extracting BI-RADS scores between Regex and an LLM-based method (accuracy of 89.20% for Regex versus 87.69% for the LLM-based method; p=0.56). Compared to the LLM-based method, Regex processing was more efficient, completing the task 28,120 times faster (0.06 seconds vs. 1687.20 seconds). Further analysis revealed LLMs favored common classifications (particularly BI-RADS value of 2) while Regex more frequently returned "unclear" values. We also could confirm in our sample an already known laterality bias for breast cancer (BI-RADS 6) and detected a slight laterality skew for suspected breast cancer (BI-RADS 5) as well. ConclusionFor structured, standardized data like BI-RADS, traditional NLP techniques seem to be superior, though future work should explore hybrid approaches combining Regex precision for standardized elements with LLM contextual understanding for more complex information extraction tasks.

Physician-level classification performance across multiple imaging domains with a diagnostic medical foundation model and a large dataset of annotated medical images

Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.

medrxiv logopreprintMay 31 2025
A diagnostic medical foundation model (MedFM) is an artificial intelligence (AI) system engineered to accurately determine diagnoses across various medical imaging modalities and specialties. To train MedFM, we created the PubMed Central Medical Images Dataset (PMCMID), the largest annotated medical image dataset to date, comprising 16,126,659 images from 3,021,780 medical publications. Using AI- and ontology-based methods, we identified 4,482,237 medical images (e.g., clinical photos, X-rays, ultrasounds) and generated comprehensive annotations. To optimize MedFMs performance and assess biases, 13,266 images were manually annotated to establish a multimodal benchmark. MedFM achieved physician-level performance in diagnosis tasks spanning radiology, dermatology, and infectious diseases without requiring specific training. Additionally, we developed the Image2Paper app, allowing clinicians to upload medical images and retrieve relevant literature. The correct diagnoses appeared within the top ten results in 88.4% and at least one relevant differential diagnosis in 93.0%. MedFM and PMCMID were made publicly available. FundingResearch reported here was partially supported by the National Cancer Institute (NCI) (R01 CA260271), the Saudi Company for Artificial Intelligence (SCAI) Authority, and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project DAKI-FWS (01MK21009E). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Wojciechowska, M. K., Malacrino, S., Windell, D., Culver, E., Dyson, J., UK-AIH Consortium,, Rittscher, J.

medrxiv logopreprintMay 13 2025
O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.

LiteMIL: A Computationally Efficient Transformer-Based MIL for Cancer Subtyping on Whole Slide Images.

Kussaibi, H.

medrxiv logopreprintMay 12 2025
PurposeAccurate cancer subtyping is crucial for effective treatment; however, it presents challenges due to overlapping morphology and variability among pathologists. Although deep learning (DL) methods have shown potential, their application to gigapixel whole slide images (WSIs) is often hindered by high computational demands and the need for efficient, context-aware feature aggregation. This study introduces LiteMIL, a computationally efficient transformer-based multiple instance learning (MIL) network combined with Phikon, a pathology-tuned self-supervised feature extractor, for robust and scalable cancer subtyping on WSIs. MethodsInitially, patches were extracted from TCGA-THYM dataset (242 WSIs, six subtypes) and subsequently fed in real-time to Phikon for feature extraction. To train MILs, features were arranged into uniform bags using a chunking strategy that maintains tissue context while increasing training data. LiteMIL utilizes a learnable query vector within an optimized multi-head attention module for effective feature aggregation. The models performance was evaluated against established MIL methods on the Thymic Dataset and three additional TCGA datasets (breast, lung, and kidney cancer). ResultsLiteMIL achieved 0.89 {+/-} 0.01 F1 score and 0.99 AUC on Thymic dataset, outperforming other MILs. LiteMIL demonstrated strong generalizability across the external datasets, scoring the best on breast and kidney cancer datasets. Compared to TransMIL, LiteMIL significantly reduces training time and GPU memory usage. Ablation studies confirmed the critical role of the learnable query and layer normalization in enhancing performance and stability. ConclusionLiteMIL offers a resource-efficient, robust solution. Its streamlined architecture, combined with the compact Phikon features, makes it suitable for integrating into routine histopathological workflows, particularly in resource-limited settings.

Automatic Quantification of Ki-67 Labeling Index in Pediatric Brain Tumors Using QuPath

Spyretos, C., Pardo Ladino, J. M., Blomstrand, H., Nyman, P., Snodahl, O., Shamikh, A., Elander, N. O., Haj-Hosseini, N.

medrxiv logopreprintMay 12 2025
AO_SCPLOWBSTRACTC_SCPLOWThe quantification of the Ki-67 labeling index (LI) is critical for assessing tumor proliferation and prognosis in tumors, yet manual scoring remains a common practice. This study presents an automated workflow for Ki-67 scoring in whole slide images (WSIs) using an Apache Groovy code script for QuPath, complemented by a Python-based post-processing script, providing cell density maps and summary tables. The tissue and cell segmentation are performed using StarDist, a deep learning model, and adaptive thresholding to classify Ki-67 positive and negative nuclei. The pipeline was applied to a cohort of 632 pediatric brain tumor cases with 734 Ki-67-stained WSIs from the Childrens Brain Tumor Network. Medulloblastoma showed the highest Ki-67 LI (median: 19.84), followed by atypical teratoid rhabdoid tumor (median: 19.36). Moderate values were observed in brainstem glioma-diffuse intrinsic pontine glioma (median: 11.50), high-grade glioma (grades 3 & 4) (median: 9.50), and ependymoma (median: 5.88). Lower indices were found in meningioma (median: 1.84), while the lowest were seen in low-grade glioma (grades 1 & 2) (median: 0.85), dysembryoplastic neuroepithelial tumor (median: 0.63), and ganglioglioma (median: 0.50). The results aligned with the consensus of the oncology, demonstrating a significant correlation in Ki-67 LI across most of the tumor families/types, with high malignancy tumors showing the highest proliferation indices and lower malignancy tumors exhibiting lower Ki-67 LI. The automated approach facilitates the assessment of large amounts of Ki-67 WSIs in research settings.
Page 1 of 212 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.