Sort by:
Page 1 of 327 results
Next

Multimodal AI-driven Biomarker for Early Detection of Cancer Cachexia

Ahmed, S., Parker, N., Park, M., Davis, E. W., Jeong, D., Permuth, J. B., Schabath, M. B., Yilmaz, Y., Rasool, G.

medrxiv logopreprintSep 19 2025
Cancer cachexia, a multifactorial metabolic syndrome characterized by severe muscle wasting and weight loss, contributes to poor outcomes across various cancer types but lacks a standardized, generalizable biomarker for early detection. We present a multimodal AI-based biomarker trained on real-world clinical, radiologic, laboratory, and unstructured clinical note data, leveraging foundation models and large language models (LLMs) to identify cachexia at the time of cancer diagnosis. Prediction accuracy improved with each added modality: 77% using clinical variables alone, 81% with added laboratory data, and 85% with structured symptom features extracted from clinical notes. Incorporating embeddings from clinical text and CT images further improved accuracy to 92%. The framework also demonstrated prognostic utility, improving survival prediction as data modalities were integrated. Designed for real-world clinical deployment, the framework accommodates missing modalities without requiring imputation or case exclusion, supporting scalability across diverse oncology settings. Unlike prior models trained on curated datasets, our approach utilizes standard-of-care clinical data, facilitating integration into oncology workflows. In contrast to fixed-threshold composite indices such as the cachexia index (CXI), the model generates patient-specific predictions, enabling adaptable, cancer-agnostic performance. To enhance clinical reliability and safety, the framework incorporates uncertainty estimation to flag low-confidence cases for expert review. This work advances a clinically applicable, scalable, and trustworthy AI-driven decision support tool for early cachexia detection and personalized oncology care.

Risk prediction for lung cancer screening: a systematic review and meta-regression

Rezaeianzadeh, R., Leung, C., Kim, S. J., Choy, K., Johnson, K. M., Kirby, M., Lam, S., Smith, B. M., Sadatsafavi, M.

medrxiv logopreprintSep 12 2025
BackgroundLung cancer (LC) is the leading cause of cancer mortality, often diagnosed at advanced stages. Screening reduces mortality in high-risk individuals, but its efficiency can improve with pre- and post-screening risk stratification. With recent LC screening guideline updates in Europe and the US, numerous novel risk prediction models have emerged since the last systematic review of such models. We reviewed risk-based models for selecting candidates for CT screening, and post-CT stratification. MethodsWe systematically reviewed Embase and MEDLINE (2020-2024), identifying studies proposing new LC risk models for screening selection or nodule classification. Data extraction included study design, population, model type, risk horizon, and internal/external validation metrics. In addition, we performed an exploratory meta-regression of AUCs to assess whether sample size, model class, validation type, and biomarker use were associated with discrimination. ResultsOf 1987 records, 68 were included: 41 models were for screening selection (20 without biomarkers, 21 with), and 27 for nodule classification. Regression-based models predominated, though machine learning and deep learning approaches were increasingly common. Discrimination ranged from moderate (AUC{approx}0.70) to excellent (>0.90), with biomarker and imaging-enhanced models often outperforming traditional ones. Model calibration was inconsistently reported, and fewer than half underwent external validation. Meta-regression suggested that, among pre-screening models, larger sample sizes were modestly associated with higher AUC. Conclusion75 models had been identified prior to 2020, we found 68 models since. This reflects growing interest in personalized LC screening. While many demonstrate strong discrimination, inconsistent calibration and limited external validation hinder clinical adoption. Future efforts should prioritize improving existing models rather than developing new ones, transparent evaluation, cost-effectiveness analysis, and real-world implementation.

Radiologist-AI Collaboration for Ischemia Diagnosis in Small Bowel Obstruction: Multicentric Development and External Validation of a Multimodal Deep Learning Model

Vanderbecq, Q., Xia, W. F., Chouzenoux, E., Pesquet, J.-c., Zins, M., Wagner, M.

medrxiv logopreprintSep 8 2025
PurposeTo develop and externally validate a multimodal AI model for detecting ischaemia complicating small-bowel obstruction (SBO). MethodsWe combined 3D CT data with routine laboratory markers (C-reactive protein, neutrophil count) and, optionally, radiology report text. From two centers, 1,350 CT examinations were curated; 771 confirmed SBO scans were used for model development with patient-level splits. Ischemia labels were defined by surgical confirmation within 24 hours of imaging. Models (MViT, ResNet-101, DaViT) were trained as unimodal and multimodal variants. External testing was used for 66 independent cases from a third center. Two radiologists (attending, resident) read the test set with and without AI assistance. Performance was assessed using AUC, sensitivity, specificity, and 95% bootstrap confidence intervals; predictions included a confidence score. ResultsThe image-plus-laboratory model performed best on external testing (AUC 0.69 [0.59-0.79], sensitivity 0.89 [0.76-1.00], and specificity 0.44 [0.35-0.54]). Adding report text improved internal validation but did not generalize externally; image+text and full multimodal variants did not exceed image+laboratory performance. Without AI, the attending outperformed the resident (AUC 0.745 [0.617-0.845] vs 0.706 [0.581-0.818]); with AI, both improved, attending 0.752 [0.637-0.853] and resident 0.752 [0.629-0.867], rising to 0.750 [0.631-0.839] and 0.773 [0.657-0.867] with confidence display; differences were not statistically significant. ConclusionA multimodal AI that combines CT images with routine laboratory markers outperforms single-modality approaches and boosts radiologist readers performance notably junior, supporting earlier, more consistent decisions within the first 24 hours. Key PointsA multimodal artificial intelligence (AI) model that combines CT images with laboratory markers detected ischemia in small-bowel obstruction with AUC 0.69 (95% CI 0.59-0.79) and sensitivity 0.89 (0.76-1.00) on external testing, outperforming single-modality models. Adding report text did not generalize across sites: the image+text model fell from AUC 0.82 (internal) to 0.53 (external), and adding text to image+biology left external AUC unchanged (0.69) with similar specificity (0.43-0.44). With AI assistance both junior and senior readers improved; the juniors AUC rose from 0.71 to 0.77, reaching senior-level performance. Summary StatementA multicentric AI model combining CT and routine laboratory data (CRP and neutrophilia) improved radiologists detection of ischemia in small-bowel obstruction. This tool supports earlier decision-making within the first 24 hours.

AI-based synthetic simulation CT generation from diagnostic CT for simulation-free workflow of spinal palliative radiotherapy

Han, Y., Hanania, A. N., Siddiqui, Z. A., Ugarte, V., Zhou, B., Mohamed, A. S. R., Pathak, P., Hamstra, D. A., Sun, B.

medrxiv logopreprintSep 5 2025
Purpose/ObjectiveCurrent radiotherapy (RT) planning workflows rely on pre-treatment simulation CT (sCT), which can significantly delay treatment initiation, particularly in resource-constrained settings. While diagnostic CT (dCT) offers a potential alternative for expedited planning, inherent geometric discrepancies from sCT in patient positioning and table curvature limit its direct use for accurate RT planning. This study presents a novel AI-based method designed to overcome these limitations by generating synthetic simulation CT (ssCT) directly from standard dCT for spinal palliative RT, aiming to eliminate the need for sCT and accelerate the treatment workflow. Materials/MethodsssCTs were generated using two neural network models to adjust spine position and correct table curvature. The neural networks use a three-layer structure (ReLU activation), optimized by Adam with MSE loss and MAE metrics. The models were trained on paired dCT and sCT images from 30 patients undergoing palliative spine radiotherapy from a safety-net hospital, with 22 cases used for training and 8 for testing. To explore institutional dependence, the models were also tested on 7 patients from an academic medical center (AMC). To evaluate ssCT accuracy, both ssCT and dCT were aligned with sCT using the same frame of reference rigid registration on bone windows. Dosimetric differences were assessed by comparing dCT vs. sCT and ssCT vs. sCT, quantifying deviations in dose-volume histogram (DVH) metrics, including Dmean, Dmax, D95, D99, V100, V107, and root-mean-square (RMS) differences. The imaging and plan quality was assessed by four radiation oncologists using a Likert score. The Wilcoxon signed-rank test was used to determine whether there is a significant difference between the two methods. ResultsFor the safety-net hospital cases, the generated ssCT demonstrated significantly improved geometric and dosimetric accuracy compared to dCT. ssCT reduced the mean difference in key dosimetric parameters (e.g., Dmean difference decreased from 2.0% for dCT vs. sCT to 0.57% for ssCT vs. sCT with significant improvement under the Wilcoxon signed-rank test) and achieved a significant reduction in the RMS difference of DVH curves (from 6.4% to 2.2%). Furthermore, physician evaluations showed that ssCT was consistently rated as significantly superior for treatment planning images (mean scores improving from "Acceptable" for dCT to "Good to Perfect" for ssCT), reflecting improved confidence in target and tissue positioning. In the academic medical-center cohort--where technologists already apply meticulous pre-scan alignment--ssCT still yielded statistically significant, though smaller, improvements in several dosimetric endpoints and in observer ratings. ConclusionOur AI-driven approach successfully generates ssCT from dCT that achieves geometric and dosimetric accuracy comparable to sCT for spinal palliative RT planning. By specifically addressing critical discrepancies like spine position and table curvature, this method offers a robust approach to bypass the need for dedicated sCT simulations. This advancement has the potential to significantly streamline the RT workflow, reduce treatment uncertainties, and accelerate time to treatment, offering a highly promising solution for improving access to timely and accurate radiotherapy, especially in limited-resource environments.

Predictive modeling of hematoma expansion from non-contrast computed tomography in spontaneous intracerebral hemorrhage patients

Ironside, N., El Naamani, K., Rizvi, T., Shifat-E-Rabbi, M., Kundu, S., Becceril-Gaitan, A., Pas, K., Snyder, H., Chen, C.-J., Langefeld, C., Woo, D., Mayer, S. A., Connolly, E. S., Rohde, G. K., VISTA-ICH,, ERICH investigators,

medrxiv logopreprintSep 2 2025
Hematoma expansion is a consistent predictor of poor neurological outcome and mortality after spontaneous intracerebral hemorrhage (ICH). An incomplete understanding of its biophysiology has limited early preventative intervention. Transport-based morphometry (TBM) is a mathematical modeling technique that uses a physically meaningful metric to quantify and visualize discriminating image features that are not readily perceptible to the human eye. We hypothesized that TBM could discover relationships between hematoma morphology on initial Non-Contrast Computed Tomography (NCCT) and hematoma expansion. 170 spontaneous ICH patients enrolled in the multi-center international Virtual International Trials of Stroke Archive (VISTA-ICH) with time-series NCCT data were used for model derivation. Its performance was assessed on a test dataset of 170 patients from the Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study. A unique transport-based representation was produced from each presentation NCCT hematoma image to identify morphological features of expansion. The principal hematoma features identified by TBM were larger size, density heterogeneity, shape irregularity and peripheral density distribution. These were consistent with clinician-identified features of hematoma expansion, corroborating the hypothesis that morphological characteristics of the hematoma promote future growth. Incorporating these traits into a multivariable model comprising morphological, spatial and clinical information achieved a AUROC of 0.71 for quantifying 24-hour hematoma expansion risk in the test dataset. This outperformed existing clinician protocols and alternate machine learning methods, suggesting that TBM detected features with improved precision than by visual inspection alone. This pre-clinical study presents a quantitative and interpretable method for discovery and visualization of NCCT biomarkers of hematoma expansion in ICH patients. Because TBM has a direct physical meaning, its modeling of NCCT hematoma features can inform hypotheses for hematoma expansion mechanisms. It has potential future application as a clinical risk stratification tool.

A hybrid computer vision model to predict lung cancer in diverse populations

Zakkar, A., Perwaiz, N., Harikrishnan, V., Zhong, W., Narra, V., Krule, A., Yousef, F., Kim, D., Burrage-Burton, M., Lawal, A. A., Gadi, V., Korpics, M. C., Kim, S. J., Chen, Z., Khan, A. A., Molina, Y., Dai, Y., Marai, E., Meidani, H., Nguyen, R., Salahudeen, A. A.

medrxiv logopreprintAug 29 2025
PURPOSE Disparities of lung cancer incidence exist in Black populations and screening criteria underserve Black populations due to disparately elevated risk in the screening eligible population. Prediction models that integrate clinical and imaging-based features to individualize lung cancer risk is a potential means to mitigate these disparities. PATIENTS AND METHODS This Multicenter (NLST) and catchment population based (UIH, urban and suburban Cook County) study utilized participants at risk of lung cancer with available lung CT imaging and follow up between the years 2015 and 2024. 53,452 in NLST and 11,654 in UIH were included based on age and tobacco use based risk factors for lung cancer. Cohorts were used for training and testing of deep and machine learning models using clinical features alone or combined with CT image features (hybrid computer vision). RESULTS An optimized 7 clinical feature model achieved ROC-AUC values ranging 0.64-0.67 in NLST and 0.60-0.65 in UIH cohorts across multiple years. Incorporation of imaging features to form a hybrid computer vision model significantly improved ROC-AUC values to 0.78-0.91 in NLST but deteriorated in UIH with ROC-AUC values of 0.68- 0.80, attributable to Black participants where ROC-AUC values ranged from 0.63-0.72 across multiple years. Retraining the hybrid computer vision model by incorporating Black and other participants from the UIH cohort improved performance with ROC- AUC values of 0.70-0.87 in a held out UIH test set. CONCLUSION Hybrid computer vision predicted risk with improved accuracy compared to clinical risk models alone. However, potential biases in image training data reduced model generalizability in Black participants. Performance was improved upon retraining with a subset of the UIH cohort, suggesting that inclusive training and validation datasets can minimize racial disparities. Future studies incorporating vision models trained on representative data sets may demonstrate improved health equity upon clinical use.

Benign-Malignant Classification of Pulmonary Nodules in CT Images Based on Fractal Spectrum Analysis

Ma, Y., Lei, S., Wang, B., Qiao, Y., Xing, F., Liang, T.

medrxiv logopreprintAug 26 2025
This study reveals that pulmonary nodules exhibit distinct multifractal characteristics, with malignant nodules demonstrating significantly higher fractal dimensions at larger scales. Based on this fundamental finding, an automatic benign-malignant classification method for pulmonary nodules in CT images was developed using fractal spectrum analysis. By computing continuous three-dimensional fractal dimensions on 121 nodule samples from the LIDC-IDRI database, a 201-dimensional fractal feature spectrum was extracted, and a simplified multilayer perceptron neural network (with only 6x6 minimal neural network nodes in the intermediate layers) was constructed for pulmonary nodule classification. Experimental results demonstrate that this method achieved 96.69% accuracy in distinguishing benign from malignant pulmonary nodules. The discovery of scale-dependent multifractal properties enables fractal spectrum analysis to effectively capture the complexity differences in multi-scale structures of malignant nodules, providing an efficient and interpretable AI-aided diagnostic method for early lung cancer diagnosis.

Deep Learning-Assisted Skeletal Muscle Radiation Attenuation at C3 Predicts Survival in Head and Neck Cancer

Barajas Ordonez, F., Xie, K., Ferreira, A., Siepmann, R., Chargi, N., Nebelung, S., Truhn, D., Berge, S., Bruners, P., Egger, J., Hölzle, F., Wirth, M., Kuhl, C., Puladi, B.

medrxiv logopreprintAug 21 2025
BackgroundHead and neck cancer (HNC) patients face an increased risk of malnutrition due to lifestyle, tumor localization, and treatment effects. While skeletal muscle area (SMA) and radiation attenuation (SM-RA) at the third lumbar vertebra (L3) are established prognostic markers, L3 is not routinely available in head and neck imaging. The prognostic value of SM-RA at the third cervical vertebra (C3) remains unclear. This study assesses whether SMA and SM-RA at C3 predict locoregional control (LRC) and overall survival (OS) in HNC. MethodsWe analyzed 904 HNC cases with head and neck CT scans. A deep learning pipeline identified C3, and SMA/SM-RA were quantified via automated segmentation with manual verification. Cox proportional hazards models assessed associations with LRC and OS, adjusting for clinical factors. ResultsMedian SMA and SM-RA were 36.64 cm{superscript 2} (IQR: 30.12-42.44) and 50.77 HU (IQR: 43.04-57.39). In multivariate analysis, lower SMA (HR 1.62, 95% CI: 1.02-2.58, p = 0.04), lower SM-RA (HR 1.89, 95% CI: 1.30-2.79, p < 0.001), and advanced T stage (HR 1.50, 95% CI: 1.06-2.12, p = 0.02) were prognostic for LRC. OS predictors included advanced T stage (HR 2.17, 95% CI: 1.64-2.87, p < 0.001), age [&ge;]70 years (HR 1.40, 95% CI: 1.00-1.96, p = 0.05), male sex (HR 1.64, 95% CI: 1.02-2.63, p = 0.04), and lower SM-RA (HR 2.15, 95% CI: 1.56-2.96, p < 0.001). ConclusionDeep learning-assisted SM-RA assessment at C3 outperforms SMA for LRC and OS in HNC, supporting its use as a routine biomarker and L3 alternative.

A Cardiac-specific CT Foundation Model for Heart Transplantation

Xu, H., Woicik, A., Asadian, S., Shen, J., Zhang, Z., Nabipoor, A., Musi, J. P., Keenan, J., Khorsandi, M., Al-Alao, B., Dimarakis, I., Chalian, H., Lin, Y., Fishbein, D., Pal, J., Wang, S., Lin, S.

medrxiv logopreprintAug 19 2025
Heart failure is a major cause of morbitidy and mortality, with the severest forms requiring heart transplantation. Heart size matching between the donor and recipient is a critical step in ensuring a successful transplantation. Currently, a set of equations based on population measures of height, weight, sex and age, viz. predicted heart mass (PHM), are used but can be improved upon by personalized information from recipient and donor chest CT images. Here, we developed GigaHeart, the first heart-specific foundation model pretrained on 180,897 chest CT volumes from 56,607 patients. The key idea of GigaHeart is to direct the foundation models attention towards the heart by contrasting the heart region and the entire chest, thereby encouraging the model to capture fine-grained cardiac features. GigaHeart achieves the best performance on 8 cardiac-specific classification tasks and further, exhibits superior performance on cross-modal tasks by jointly modeling CT images and reports. We similarly developed a thorax-specific foundation model and observed promising performance on 9 thorax-specific tasks, indicating the potential to extend GigaHeart to other organ-specific foundation models. More importantly, GigaHeart addresses the heart sizing problem. It avoids oversizing by correctly segmenting the sizes of hearts of donors and recipients. In regressions against actual heart masses, our AI-segmented total cardiac volumes (TCVs) has a 33.3% R2 improvement when compared to PHM. Meanwhile, GigaHeart also solves the undersizing problem by adding a regression layer to the model. Specifically, GigaHeart reduces the mean squared error by 57% against PHM. In total, we show that GigaHeart increases the acceptable range of donor heart sizes and matches more accurately than the widely used PHM equations. In all, GigaHeart is a state-of-the-art, cardiac-specific foundation model with the key innovation of directing the models attention to the heart. GigaHeart can be finetuned for accomplishing a number of tasks accurately, of which AI-assisted heart sizing is a novel example.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.
Page 1 of 327 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.