Sort by:
Page 1 of 13 results

Machine Learning-Based Reconstruction of 2D MRI for Quantitative Morphometry in Epilepsy

Ratcliffe, C., Taylor, P. N., de Bezenac, C., Das, K., Biswas, S., Marson, A., Keller, S. S.

medrxiv logopreprintAug 6 2025
IntroductionStructural neuroimaging analyses require research quality images, acquired with costly MRI acquisitions. Isotropic (3D-T1) images are desirable for quantitative analyses, however a routine compromise in the clinical setting is to acquire anisotropic (2D-T1) analogues for qualitative visual inspection. ML (Machine learning-based) software have shown promise in addressing some of the limitations of 2D-T1 scans in research applications, yet their efficacy in quantitative research is generally poorly understood. Pathology-related abnormalities of the subcortical structures have previously been identified in idiopathic generalised epilepsy (IGE), which have been overlooked based on visual inspection, through the use of quantitative morphometric analyses. As such, IGE biomarkers present a suitable model in which to evaluate the applicability of image preprocessing methods. This study therefore explores subcortical structural biomarkers of IGE, first in our silver standard 3D-T1 scans, then in 2D-T1 scans that were either untransformed, resampled using a classical interpolation approach, or synthesised with a resolution and contrast agnostic ML model (the latter of which is compared to a separate model). Methods2D-T1 and 3D-T1 MRI scans were acquired during the same scanning session for 33 individuals with drug-responsive IGE (age mean 32.16 {+/-} SD = 14.20, male n = 14) and 42 individuals with drug-resistant IGE (31.76 {+/-} 11.12, 17), all diagnosed at the Walton Centre NHS Foundation Trust Liverpool, alongside 39 age- and sex-matched healthy controls (32.32 {+/-} 8.65, 16). The untransformed 2D-T1 scans were resampled into isotropic images using NiBabel (res-T1), and preprocessed into synthetic isotropic images using SynthSR (syn-T1). For the 3D-T1, 2D-T1, res-T1, and syn-T1 images, the recon-all command from FreeSurfer 8.0.0 was used to create parcellations of 174 anatomical regions (equivalent to the 174 regional parcellations provided as part of the DL+DiReCT pipeline), defined by the aseg and Destrieux atlases, and FSL run_first_all was used to segment subcortical surface shapes. The new ML FreeSurfer pipeline, recon-all-clinical, was also tested in the 2D-T1, 3D-T1, and res-T1 images. As a model comparison for SynthSR, the DL+DiReCT pipeline was used to provide segmentations of the 2D-T1 and res-T1 images, including estimates of regional volume and thickness. Spatial overlap and intraclass correlations between the morphometrics of the eight resulting parcellations were first determined, then subcortical surface shape abnormalities associated with IGE were identified by comparing the FSL run_first_all outputs of patients with controls. ResultsWhen standardised to the metrics derived from the 3D-T1 scans, cortical volume and thickness estimates trended lower for the 2D-T1, res-T1, syn-T1, and DL+DiReCT outputs, whereas subcortical volume estimates were more coherent. Dice coefficients revealed an acceptable spatial similarity between the cortices of the 3D-T1 scans and the other images overall, and was higher in the subcortical structures. Intraclass correlation coefficients were consistently lowest when metrics were computed for model-derived inputs, and estimates of thickness were less similar to the ground truth than those of volume. For the people with epilepsy, the 3D-T1 scans showed significant surface deflations across various subcortical structures when compared to healthy controls. Analysis of the 2D-T1 scans enabled the reliable detection of a subset of subcortical abnormalities, whereas analyses of the res-T1 and syn-T1 images were more prone to false-positive results. ConclusionsResampling and ML image synthesis methods do not currently attenuate partial volume effects resulting from low through plane resolution in anisotropic MRI scans, instead quantitative analyses using 2D-T1 scans should be interpreted with caution, and researchers should consider the potential implications of preprocessing. The recon-all-clinical pipeline is promising, but requires further evaluation, especially when considered as an alternative to the classical pipeline. Key PointsO_LISurface deviations indicative of regional atrophy and hypertrophy were identified in people with idiopathic generalised epilepsy. C_LIO_LIPartial volume effects are likely to attenuate subtle morphometric abnormalities, increasing the likelihood of erroneous inference. C_LIO_LIPriors in synthetic image creation models may render them insensitive to subtle biomarkers. C_LIO_LIResampling and machine-learning based image synthesis are not currently replacements for research quality acquisitions in quantitative MRI research. C_LIO_LIThe results of studies using synthetic images should be interpreted in a separate context to those using untransformed data. C_LI

A Deep Learning Lung Cancer Segmentation Pipeline to Facilitate CT-based Radiomics

So, A. C. P., Cheng, D., Aslani, S., Azimbagirad, M., Yamada, D., Dunn, R., Josephides, E., McDowall, E., Henry, A.-R., Bille, A., Sivarasan, N., Karapanagiotou, E., Jacob, J., Pennycuick, A.

medrxiv logopreprintJun 18 2025
BackgroundCT-based radio-biomarkers could provide non-invasive insights into tumour biology to risk-stratify patients. One of the limitations is laborious manual segmentation of regions-of-interest (ROI). We present a deep learning auto-segmentation pipeline for radiomic analysis. Patients and Methods153 patients with resected stage 2A-3B non-small cell lung cancer (NSCLCs) had tumours segmented using nnU-Net with review by two clinicians. The nnU-Net was pretrained with anatomical priors in non-cancerous lungs and finetuned on NSCLCs. Three ROIs were segmented: intra-tumoural, peri-tumoural, and whole lung. 1967 features were extracted using PyRadiomics. Feature reproducibility was tested using segmentation perturbations. Features were selected using minimum-redundancy-maximum-relevance with Random Forest-recursive feature elimination nested in 500 bootstraps. ResultsAuto-segmentation time was [~]36 seconds/series. Mean volumetric and surface Dice-Sorensen coefficient (DSC) scores were 0.84 ({+/-}0.28), and 0.79 ({+/-}0.34) respectively. DSC were significantly correlated with tumour shape (sphericity, diameter) and location (worse with chest wall adherence), but not batch effects (e.g. contrast, reconstruction kernel). 6.5% cases had missed segmentations; 6.5% required major changes. Pre-training on anatomical priors resulted in better segmentations compared to training on tumour-labels alone (p<0.001) and tumour with anatomical labels (p<0.001). Most radiomic features were not reproducible following perturbations and resampling. Adding radiomic features, however, did not significantly improve the clinical model in predicting 2-year disease-free survival: AUCs 0.67 (95%CI 0.59-0.75) vs 0.63 (95%CI 0.54-0.71) respectively (p=0.28). ConclusionOur study demonstrates that integrating auto-segmentation into radio-biomarker discovery is feasible with high efficiency and accuracy. Whilst radiomic analysis show limited reproducibility, our auto-segmentation may allow more robust radio-biomarker analysis using deep learning features.

Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Wojciechowska, M. K., Malacrino, S., Windell, D., Culver, E., Dyson, J., UK-AIH Consortium,, Rittscher, J.

medrxiv logopreprintMay 13 2025
O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.
Page 1 of 13 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.