Sort by:
Page 1 of 434 results
Next

Bayesian machine learning enables discovery of risk factors for hepatosplenic multimorbidity related to schistosomiasis

Zhi, Y.-C., Anguajibi, V., Oryema, J. B., Nabatte, B., Opio, C. K., Kabatereine, N. B., Chami, G. F.

medrxiv logopreprintSep 19 2025
One in 25 deaths worldwide is related to liver disease, and often with multiple hepatosplenic conditions. Yet, little is understood of the risk factors for hepatosplenic multimorbidity, especially in the context of chronic infections. We present a novel Bayesian multitask learning framework to jointly model 45 hepatosplenic conditions assessed using point-of-care B-mode ultrasound for 3155 individuals aged 5-91 years within the SchistoTrack cohort across rural Uganda where chronic intestinal schistosomiasis is endemic. We identified distinct and shared biomedical, socioeconomic, and spatial risk factors for individual conditions and hepatosplenic multimorbidity, and introduced methods for measuring condition dependencies as risk factors. Notably, for gastro-oesophageal varices, we discovered key risk factors of older age, lower hemoglobin concentration, and severe schistosomal liver fibrosis. Our findings provide a compendium of risk factors to inform surveillance, triage, and follow-up, while our model enables improved prediction of hepatosplenic multimorbidity, and if validated on other systems, general multimorbidity.

Multimodal AI-driven Biomarker for Early Detection of Cancer Cachexia

Ahmed, S., Parker, N., Park, M., Davis, E. W., Jeong, D., Permuth, J. B., Schabath, M. B., Yilmaz, Y., Rasool, G.

medrxiv logopreprintSep 19 2025
Cancer cachexia, a multifactorial metabolic syndrome characterized by severe muscle wasting and weight loss, contributes to poor outcomes across various cancer types but lacks a standardized, generalizable biomarker for early detection. We present a multimodal AI-based biomarker trained on real-world clinical, radiologic, laboratory, and unstructured clinical note data, leveraging foundation models and large language models (LLMs) to identify cachexia at the time of cancer diagnosis. Prediction accuracy improved with each added modality: 77% using clinical variables alone, 81% with added laboratory data, and 85% with structured symptom features extracted from clinical notes. Incorporating embeddings from clinical text and CT images further improved accuracy to 92%. The framework also demonstrated prognostic utility, improving survival prediction as data modalities were integrated. Designed for real-world clinical deployment, the framework accommodates missing modalities without requiring imputation or case exclusion, supporting scalability across diverse oncology settings. Unlike prior models trained on curated datasets, our approach utilizes standard-of-care clinical data, facilitating integration into oncology workflows. In contrast to fixed-threshold composite indices such as the cachexia index (CXI), the model generates patient-specific predictions, enabling adaptable, cancer-agnostic performance. To enhance clinical reliability and safety, the framework incorporates uncertainty estimation to flag low-confidence cases for expert review. This work advances a clinically applicable, scalable, and trustworthy AI-driven decision support tool for early cachexia detection and personalized oncology care.

The HeartMagic prospective observational study protocol - characterizing subtypes of heart failure with preserved ejection fraction

Meyer, P., Rocca, A., Banus, J., Ogier, A. C., Georgantas, C., Calarnou, P., Fatima, A., Vallee, J.-P., Deux, J.-F., Thomas, A., Marquis, J., Monney, P., Lu, H., Ledoux, J.-B., Tillier, C., Crowe, L. A., Abdurashidova, T., Richiardi, J., Hullin, R., van Heeswijk, R. B.

medrxiv logopreprintSep 16 2025
Introduction Heart failure (HF) is a life-threatening syndrome with significant morbidity and mortality. While evidence-based drug treatments have effectively reduced morbidity and mortality in HF with reduced ejection fraction (HFrEF), few therapies have been demonstrated to improve outcomes in HF with preserved ejection fraction (HFpEF). The multifaceted clinical presentation is one of the main reasons why the current understanding of HFpEF remains limited. This may be caused by the existence of several HFpEF disease subtypes that each need different treatments. There is therefore an unmet need for a holistic approach that combines comprehensive imaging with metabolomic, transcriptomic and genomic mapping to subtype HFpEF patients. This protocol details the approach employed in the HeartMagic study to address this gap in understanding. Methods This prospective multi-center observational cohort study will include 500 consecutive patients with actual or recent hospitalization for treatment of HFpEF at two Swiss university hospitals, along with 50 age-matched HFrEF patients and 50 age-matched healthy controls. Diagnosis of heart failure is based on clinical signs and symptoms and subgrouping HF patients is based on the left-ventricular ejection fraction. In addition to routine clinical workup, participants undergo genomic, transcriptomic, and metabolomic analyses, while the anatomy, composition, and function of the heart are quantified by comprehensive echocardiography and magnetic resonance imaging (MRI). Quantitative MRI is also applied to characterize the kidney. The primary outcome is a composite of one-year cardiovascular mortality or rehospitalization. Machine learning (ML) based multi-modal clustering will be employed to identify distinct HFpEF subtypes in the holistic data. The clinical importance of these subtypes shall be evaluated based on their association with the primary outcome. Statistical analysis will include group comparisons across modalities, survival analysis for the primary outcome, and integrative multi-modal clustering combining clinical, imaging, ECG, genomic, transcriptomic, and metabolomic data to identify and validate HFpEF subtypes. Discussion The integration of comprehensive MRI with extensive genomic and metabolomic profiling in this study will result in an unprecedented panoramic view of HFpEF and should enable us to distinguish functional subgroups of HFpEF patients. This approach has the potential to provide unprecedented insights on HFpEF disease and should provide a basis for personalized therapies. Beyond this, identifying HFpEF subtypes with specific molecular and structural characteristics could lead to new targeted pharmacological interventions, with the potential to improve patient outcomes.

Predicting Rejection Risk in Heart Transplantation: An Integrated Clinical-Histopathologic Framework for Personalized Post-Transplant Care

Kim, D. D., Madabhushi, A., Margulies, K. B., Peyster, E. G.

medrxiv logopreprintSep 8 2025
BackgroundCardiac allograft rejection (CAR) remains the leading cause of early graft failure after heart transplantation (HT). Current diagnostics, including histologic grading of endomyocardial biopsy (EMB) and blood-based assays, lack accurate predictive power for future CAR risk. We developed a predictive model integrating routine clinical data with quantitative morphologic features extracted from routine EMBs to demonstrate the precision-medicine potential of mining existing data sources in post-HT care. MethodsIn a retrospective cohort of 484 HT recipients with 1,188 EMB encounters within 6 months post-transplant, we extracted 370 quantitative pathology features describing lymphocyte infiltration and stromal architecture from digitized H&E-stained slides. Longitudinal clinical data comprising 268 variables--including lab values, immunosuppression records, and prior rejection history--were aggregated per patient. Using the XGBoost algorithm with rigorous cross-validation, we compared models based on four different data sources: clinical-only, morphology-only, cross-sectional-only, and fully integrated longitudinal data. The top predictors informed the derivation of a simplified Integrated Rejection Risk Index (IRRI), which relies on just 4 clinical and 4 morphology risk facts. Model performance was evaluated by AUROC, AUPRC, and time-to-event hazard ratios. ResultsThe fully integrated longitudinal model achieved superior predictive accuracy (AUROC 0.86, AUPRC 0.74). IRRI stratified patients into risk categories with distinct future CAR hazards: high-risk patients showed a markedly increased CAR risk (HR=6.15, 95% CI: 4.17-9.09), while low-risk patients had significantly reduced risk (HR=0.52, 95% CI: 0.33-0.84). This performance exceeded models based on just cross-sectional or single-domain data, demonstrating the value of multi-modal, temporal data integration. ConclusionsBy integrating longitudinal clinical and biopsy morphologic features, IRRI provides a scalable, interpretable tool for proactive CAR risk assessment. This precision-based approach could support risk-adaptive surveillance and immunosuppression management strategies, offering a promising pathway toward safer, more personalized post-HT care with the potential to reduce unnecessary procedures and improve outcomes. Clinical PerspectiveWhat is new? O_LICurrent tools for cardiac allograft monitoring detect rejection only after it occurs and are not designed to forecast future risk. This leads to missed opportunities for early intervention, avoidable patient injury, unnecessary testing, and inefficiencies in care. C_LIO_LIWe developed a machine learning-based risk index that integrates clinical features, quantitative biopsy morphology, and longitudinal temporal trends to create a robust predictive framework. C_LIO_LIThe Integrated Rejection Risk Index (IRRI) provides highly accurate prediction of future allograft rejection, identifying both high- and low-risk patients up to 90 days in advance - a capability entirely absent from current transplant management. C_LI What are the clinical implications? O_LIIntegrating quantitative histopathology with clinical data provides a more precise, individualized estimate of rejection risk in heart transplant recipients. C_LIO_LIThis framework has the potential to guide post-transplant surveillance intensity, immunosuppressive management, and patient counseling. C_LIO_LIAutomated biopsy analysis could be incorporated into digital pathology workflows, enabling scalable, multicenter application in real-world transplant care. C_LI

Interpretable Transformer Models for rs-fMRI Epilepsy Classification and Biomarker Discovery

Jeyabose Sundar, A., Boerwinkle, V. L., Robinson Vimala, B., Leggio, O., Kazemi, M.

medrxiv logopreprintSep 4 2025
BackgroundAutomated interpretation of resting-state fMRI (rs-fMRI) for epilepsy diagnosis remains a challenge. We developed a regularized transformer that models parcel-wise spatial patterns and long-range temporal dynamics to classify epilepsy and generate interpretable, network-level candidate biomarkers. MethodsInputs were Schaefer-200 parcel time series extracted after standardized preprocessing (fMRIPrep). The Regularized Transformer is an attention-based sequence model with learned positional encoding and multi-head self-attention, combined with fMRI-specific regularization (dropout, weight decay, gradient clipping) and augmentation to improve robustness on modest clinical cohorts. Training used stratified group 4-fold cross-validation on n=65 (30 epilepsy, 35 controls) with fMRI-specific augmentation (time-warping, adaptive noise, structured masking). We compared the transformer to seven baselines (MLP, 1D-CNN, LSTM, CNN-LSTM, GCN, GAT, Attention-Only). External validation used an independent set (10 UNC epilepsy cohort, 10 controls). Biomarker discovery combined gradient-based attributions with parcelwise statistics and connectivity contrasts. ResultsOn an illustrative best-performing fold, the transformer attained Accuracy 0.77, Sensitivity 0.83, Specificity 0.88, F1-Score 0.77, and AUC 0.76. Averaged cross-validation performance was lower but consistent with these findings. External testing yielded Accuracy 0.60, AUC 0.64, Specificity 0.80, Sensitivity 0.40. Attribution-guided analysis identified distributed, network-level candidate biomarkers concentrated in limbic, somatomotor, default-mode and salience systems. ConclusionsA regularized transformer on parcel-level rs-fMRI can achieve strong within-fold discrimination and produce interpretable candidate biomarkers. Results are encouraging but preliminary larger multi-site validation, stability testing and multiple-comparison control are required prior to clinical translation.

HONeYBEE: Enabling Scalable Multimodal AI in Oncology Through Foundation Model-Driven Embeddings

Tripathi, A. G., Waqas, A., Schabath, M. B., Yilmaz, Y., Rasool, G.

medrxiv logopreprintAug 27 2025
HONeYBEE (Harmonized ONcologY Biomedical Embedding Encoder) is an open-source framework that integrates multimodal biomedical data for oncology applications. It processes clinical data (structured and unstructured), whole-slide images, radiology scans, and molecular profiles to generate unified patient-level embeddings using domain-specific foundation models and fusion strategies. These embeddings enable survival prediction, cancer-type classification, patient similarity retrieval, and cohort clustering. Evaluated on 11,400+ patients across 33 cancer types from The Cancer Genome Atlas (TCGA), clinical embeddings showed the strongest single-modality performance with 98.5% classification accuracy and 96.4% precision@10 in patient retrieval. They also achieved the highest survival prediction concordance indices across most cancer types. Multimodal fusion provided complementary benefits for specific cancers, improving overall survival prediction beyond clinical features alone. Comparative evaluation of four large language models revealed that general-purpose models like Qwen3 outperformed specialized medical models for clinical text representation, though task-specific fine-tuning improved performance on heterogeneous data such as pathology reports.

Toward Non-Invasive Voice Restoration: A Deep Learning Approach Using Real-Time MRI

Saleh, M. W.

medrxiv logopreprintAug 26 2025
Despite recent advances in brain-computer interfaces (BCIs) for speech restoration, existing systems remain invasive, costly, and inaccessible to individuals with congenital mutism or neurodegenerative disease. We present a proof-of-concept pipeline that synthesizes personalized speech directly from real-time magnetic resonance imaging (rtMRI) of the vocal tract, without requiring acoustic input. Segmented rtMRI frames are mapped to articulatory class representations using a Pix2Pix conditional GAN, which are then transformed into synthetic audio waveforms by a convolutional neural network modeling the articulatory-to-acoustic relationship. The outputs are rendered into audible form and evaluated with speaker-similarity metrics derived from Resemblyzer embeddings. While preliminary, our results suggest that even silent articulatory motion encodes sufficient information to approximate a speakers vocal characteristics, offering a non-invasive direction for future speech restoration in individuals who have lost or never developed voice.

Multi-View Echocardiographic Embedding for Accessible AI Development

Tohyama, T., Han, A., Yoon, D., Paik, K., Gow, B., Izath, N., Kpodonu, J., Celi, L. A.

medrxiv logopreprintAug 19 2025
Background and AimsEchocardiography serves as a cornerstone of cardiovascular diagnostics through multiple standardized imaging views. While recent AI foundation models demonstrate superior capabilities across cardiac imaging tasks, their massive computational requirements and reliance on large-scale datasets create accessibility barriers, limiting AI development to well-resourced institutions. Vector embedding approaches offer promising solutions by leveraging compact representations from original medical images for downstream applications. Furthermore, demographic fairness remains critical, as AI models may incorporate biases that confound clinically relevant features. We developed a multi-view encoder framework to address computational accessibility while investigating demographic fairness challenges. MethodsWe utilized the MIMIC-IV-ECHO dataset (7,169 echocardiographic studies) to develop a transformer-based multi-view encoder that aggregates view-level representations into study-level embeddings. The framework incorporated adversarial learning to suppress demographic information while maintaining clinical performance. We evaluated performance across 21 binary classification tasks encompassing echocardiographic measurements and clinical diagnoses, comparing against foundation model baselines with varying adversarial weights. ResultsThe multi-view encoder achieved a mean improvement of 9.0 AUC points (12.0% relative improvement) across clinical tasks compared to foundation model embeddings. Performance remained robust with limited echocardiographic views compared to the conventional approach. However, adversarial learning showed limited effectiveness in reducing demographic shortcuts, with stronger weighting substantially compromising diagnostic performance. ConclusionsOur framework democratizes advanced cardiac AI capabilities, enabling substantial diagnostic improvements without massive computational infrastructure. While algorithmic approaches to demographic fairness showed limitations, the multi-view encoder provides a practical pathway for broader AI adoption in cardiovascular medicine with enhanced efficiency in real-world clinical settings. Structured graphical abstract or graphical abstractO_ST_ABSKey QuestionC_ST_ABSCan multi-view encoder frameworks achieve superior diagnostic performance compared to foundation model embeddings while reducing computational requirements and maintaining robust performance with fewer echocardiographic views for cardiac AI applications? Key FindingMulti-view encoder achieved 12.0% relative improvement (9.0 AUC points) across 21 cardiac tasks compared to foundation model baselines, with efficient 512-dimensional vector embeddings and robust performance using fewer echocardiographic views. Take-home MessageVector embedding approaches with attention-based multi-view integration significantly improve cardiac diagnostic performance while reducing computational requirements, offering a pathway toward more efficient AI implementation in clinical settings. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=83 SRC="FIGDIR/small/25333725v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@a75818org.highwire.dtl.DTLVardef@88a588org.highwire.dtl.DTLVardef@12bad06_HPS_FORMAT_FIGEXP M_FIG C_FIG Translational PerspectiveOur proposed multi-view encoder framework overcomes critical barriers to the widespread adoption of artificial intelligence in echocardiography. By dramatically reducing computational requirements, the multi-view encoder approach allows smaller healthcare institutions to develop sophisticated AI models locally. The framework maintains robust performance with fewer echocardiographic examinations, which addresses real-world clinical constraints where comprehensive imaging is not feasible due to patient factors or time limitations. This technology provides a practical way to democratize advanced cardiac AI capabilities, which could improve access to cardiovascular care across diverse healthcare settings while reducing dependence on proprietary datasets and massive computational resources.

Integrating Machine Learning Pipelines for Multimodal Biomarker Prediction in Alzheimer and Parkinson Disease: A Component of the Neurodiagnoses Framework

Osaghae, N. O., GONZALEZ, M. M.

medrxiv logopreprintAug 14 2025
Alzheimers and Parkinsons diseases are age-related neurodegenerative diseases that often require invasive procedures for diagnosis. Traditional diagnostic methods may fail to capture the interplay between genetic, molecular, and neuroanatomical markers. This manuscript aims to develop interpretable machine learning models that can predict key biomarkers, such as pTau, tTau, A{beta} positivity, and motor symptom severity, using non-invasive data. Machine learning models (Random Forest, XGBoost) were trained using ADNI and PPMI baseline data. Using the APOE4 genotype, MRI volumes, cognitive scores, and demographics as inputs, SHAP was employed to enhance model interpretability. Models achieved AUCs of 0.859 (tTau) and 0.852 (pTau) with recall > 80%. The PD motor severity yielded an MAE of 5.72 and an R2 of 0.586. SHAP confirmed the contributions of APOE4 status, hippocampal atrophy, and dopaminergic asymmetries. The pipelines provide clinically meaningful predictions of biomarker status and motor symptoms, supporting interpretable, multi-axis neurodiagnostic tools within the neurodiagnoses framework.

Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart

Consortium, T. M., Boquet-Pujadas, A., anagnostakis, f., Yang, Z., Tian, Y. E., duggan, m., erus, g., srinivasan, d., Joynes, C., Bai, W., patel, p., Walker, K. A., Zalesky, A., davatzikos, c., WEN, J.

medrxiv logopreprintAug 13 2025
Disease heterogeneity and commonality pose significant challenges to precision medicine, as traditional approaches frequently focus on single disease entities and overlook shared mechanisms across conditions1. Inspired by pan-cancer2 and multi-organ research3, we introduce the concept of "pan-disease" to investigate the heterogeneity and shared etiology in brain, eye, and heart diseases. Leveraging individual-level data from 129,340 participants, as well as summary-level data from the MULTI consortium, we applied a weakly-supervised deep learning model (Surreal-GAN4,5) to multi-organ imaging, genetic, proteomic, and RNA-seq data, identifying 11 AI-derived biomarkers - called Multi-organ AI Endophenotypes (MAEs) - for the brain (Brain 1-6), eye (Eye 1-3), and heart (Heart 1-2), respectively. We found Brain 3 to be a risk factor for Alzheimers disease (AD) progression and mortality, whereas Brain 5 was protective against AD progression. Crucially, in data from an anti-amyloid AD drug (solanezumab6), heterogeneity in cognitive decline trajectories was observed across treatment groups. At week 240, patients with lower brain 1-3 expression had slower cognitive decline, whereas patients with higher expression had faster cognitive decline. A multi-layer causal pathway pinpointed Brain 1 as a mediational endophenotype7 linking the FLRT2 protein to migraine, exemplifying novel therapeutic targets and pathways. Additionally, genes associated with Eye 1 and Eye 3 were enriched in cancer drug-related gene sets with causal links to specific cancer types and proteins. Finally, Heart 1 and Heart 2 had the highest mortality risk and unique medication history profiles, with Heart 1 showing favorable responses to antihypertensive medications and Heart 2 to digoxin treatment. The 11 MAEs provide novel AI dimensional representations for precision medicine and highlight the potential of AI-driven patient stratification for disease risk monitoring, clinical trials, and drug discovery.
Page 1 of 434 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.