Sort by:
Page 1 of 440 results
Next

Explainable Cryobiopsy AI Model, CRAI, to Predict Disease Progression for Transbronchial Lung Cryobiopsies with Interstitial Pneumonia

Uegami, W., Okoshi, E. N., Lami, K., Nei, Y., Ozasa, M., Kataoka, K., Kitamura, Y., Kohashi, Y., Cooper, L. A. D., Sakanashi, H., Saito, Y., Kondoh, Y., the study group on CRYOSOLUTION,, Fukuoka, J.

medrxiv logopreprintAug 8 2025
BackgroundInterstitial lung disease (ILD) encompasses diverse pulmonary disorders with varied prognoses. Current pathological diagnoses suffer from inter-observer variability,necessitating more standardized approaches. We developed an ensemble model AI for cryobiopsy, CRAI, an artificial intelligence model to analyze transbronchial lung cryobiopsy (TBLC) specimens and predict patient outcomes. MethodsWe developed an explainable AI model, CRAI, to analyze TBLC. CRAI comprises seven modules for detecting histological features, generating 19 pathologically significant findings. A downstream XGBoost classifier was developed to predict disease progression using these findings. The models performance was evaluated using respiratory function changes and survival analysis in cross-validation and external test cohorts. FindingsIn the internal cross-validation (135 cases), the model predicted 105 cases without disease progression and 30 with disease progression. The annual {Delta}%FVC was -1.293 in the non-progressive group versus -5.198 in the progressive group, outperforming most pathologists diagnoses. In the external test cohort (48 cases), the model predicted 38 non-progressive and 10 progressive cases. Survival analysis demonstrated significantly shorter survival times in the progressive group (p=0.034). InterpretationCRAI provides a comprehensive, interpretable approach to analyzing TBLC specimens, offering potential for standardizing ILD diagnosis and predicting disease progression. The model could facilitate early identification of progressive cases and guide personalized therapeutic interventions. FundingNew Energy and Industrial Technology Development Organization (NEDO) and Japanese Ministry of Health, Labor, and Welfare.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Equivariant Spatiotemporal Transformers with MDL-Guided Feature Selection for Malignancy Detection in Dynamic PET

Dadashkarimi, M.

medrxiv logopreprintAug 6 2025
Dynamic Positron Emission Tomography (PET) scans offer rich spatiotemporal data for detecting malignancies, but their high-dimensionality and noise pose significant challenges. We introduce a novel framework, the Equivariant Spatiotemporal Transformer with MDL-Guided Feature Selection (EST-MDL), which integrates group-theoretic symmetries, Kolmogorov complexity, and Minimum Description Length (MDL) principles. By enforcing spatial and temporal symmetries (e.g., translations and rotations) and leveraging MDL for robust feature selection, our model achieves improved generalization and interpretability. Evaluated on three realworld PET datasets--LUNG-PET, BRAIN-PET, and BREAST-PET--our approach achieves AUCs of 0.94, 0.92, and 0.95, respectively, outperforming CNNs, Vision Transformers (ViTs), and Graph Neural Networks (GNNs) in AUC, sensitivity, specificity, and computational efficiency. This framework offers a robust, interpretable solution for malignancy detection in clinical settings.

Deep learning aging marker from retinal images unveils sex-specific clinical and genetic signatures

Trofimova, O., Böttger, L., Bors, S., Pan, Y., Liefers, B., Beyeler, M. J., Presby, D. M., Bontempi, D., Hastings, J., Klaver, C. C. W., Bergmann, S.

medrxiv logopreprintJul 29 2025
Retinal fundus images offer a non-invasive window into systemic aging. Here, we fine-tuned a foundation model (RETFound) to predict chronological age from color fundus images in 71,343 participants from the UK Biobank, achieving a mean absolute error of 2.85 years. The resulting retinal age gap (RAG), i.e., the difference between predicted and chronological age, was associated with cardiometabolic traits, inflammation, cognitive performance, mortality, dementia, cancer, and incident cardiovascular disease. Genome-wide analyses identified genes related to longevity, metabolism, neurodegeneration, and age-related eye diseases. Sex-stratified models revealed consistent performance but divergent biological signatures: males had younger-appearing retinas and stronger links to metabolic syndrome, while in females, both model attention and genetic associations pointed to a greater involvement of retinal vasculature. Our study positions retinal aging as a biologically meaningful and sex-sensitive biomarker that can support more personalized approaches to risk assessment and aging-related healthcare.

Prediction of OncotypeDX recurrence score using H&E stained WSI images

Cohen, S., Shamai, G., Sabo, E., Cretu, A., Barshack, I., Goldman, T., Bar-Sela, G., Pearson, A. T., Huo, D., Howard, F. M., Kimmel, R., Mayer, C.

medrxiv logopreprintJul 21 2025
The OncotypeDX 21-gene assay is a widely adopted tool for estimating recurrence risk and informing chemotherapy decisions in early-stage, hormone receptor-positive, HER2-negative breast cancer. Although informative, its high cost and long turnaround time limit accessibility and delay treatment in low- and middle-income countries, creating a need for alternative solutions. This study presents a deep learning-based approach for predicting OncotypeDX recurrence scores directly from hematoxylin and eosin-stained whole slide images. Our approach leverages a deep learning foundation model pre-trained on 171,189 slides via self-supervised learning, which is fine-tuned for our task. The model was developed and validated using five independent cohorts, out of which three are external. On the two external cohorts that include OncotypeDX scores, the model achieved an AUC of 0.825 and 0.817, and identified 21.9% and 25.1% of the patients as low-risk with sensitivity of 0.97 and 0.95 and negative predictive value of 0.97 and 0.96, showing strong generalizability despite variations in staining protocols and imaging devices. Kaplan-Meier analysis demonstrated that patients classified as low-risk by the model had a significantly better prognosis than those classified as high-risk, with a hazard ratio of 4.1 (P<0.001) and 2.0 (P<0.01) on the two external cohorts that include patient outcomes. This artificial intelligence-driven solution offers a rapid, cost-effective, and scalable alternative to genomic testing, with the potential to enhance personalized treatment planning, especially in resource-constrained settings.

Cardiac Function Assessment with Deep-Learning-Based Automatic Segmentation of Free-Running 4D Whole-Heart CMR

Ogier, A. C., Baup, S., Ilanjian, G., Touray, A., Rocca, A., Banus Cobo, J., Monton Quesada, I., Nicoletti, M., Ledoux, J.-B., Richiardi, J., Holtackers, R. J., Yerly, J., Stuber, M., Hullin, R., Rotzinger, D., van Heeswijk, R. B.

medrxiv logopreprintJul 17 2025
BackgroundFree-running (FR) cardiac MRI enables free-breathing ECG-free fully dynamic 5D (3D spatial+cardiac+respiration dimensions) imaging but poses significant challenges for clinical integration due to the volume and complexity of image analysis. Existing segmentation methods are tailored to 2D cine or static 3D acquisitions and cannot leverage the unique spatial-temporal wealth of FR data. PurposeTo develop and validate a deep learning (DL)-based segmentation framework for isotropic 3D+cardiac cycle FR cardiac MRI that enables accurate, fast, and clinically meaningful anatomical and functional analysis. MethodsFree-running, contrast-free bSSFP acquisitions at 1.5T and contrast-enhanced GRE acquisitions at 3T were used to reconstruct motion-resolved 5D datasets. From these, the end-expiratory respiratory phase was retained to yield fully isotropic 4D datasets. Automatic propagation of a limited set of manual segmentations was used to segment the left and right ventricular blood pool (LVB, RVB) and left ventricular myocardium (LVM) on reformatted short-axis (SAX) end-systolic (ES) and end-diastolic (ED) images. These were used to train a 3D nnU-Net model. Validation was performed using geometric metrics (Dice similarity coefficient [DSC], relative volume difference [RVD]), clinical metrics (ED and ES volumes, ejection fraction [EF]), and physiological consistency metrics (systole-diastole LVM volume mismatch and LV-RV stroke volume agreement). To assess the robustness and flexibility of the approach, we evaluated multiple additional DL training configurations such as using 4D propagation-based data augmentation to incorporate all cardiac phases into training. ResultsThe main proposed method achieved automatic segmentation within a minute, delivering high geometric accuracy and consistency (DSC: 0.94 {+/-} 0.01 [LVB], 0.86 {+/-} 0.02 [LVM], 0.92 {+/-} 0.01 [RVB]; RVD: 2.7%, 5.8%, 4.5%). Clinical LV metrics showed excellent agreement (ICC > 0.98 for EDV/ESV/EF, bias < 2 mL for EDV/ESV, < 1% for EF), while RV metrics remained clinically reliable (ICC > 0.93 for EDV/ESV/EF, bias < 1 mL for EDV/ESV, < 1% for EF) but exhibited wider limits of agreement. Training on all cardiac phases improved temporal coherence, reducing LVM volume mismatch from 4.0% to 2.6%. ConclusionThis study validates a DL-based method for fast and accurate segmentation of whole-heart free-running 4D cardiac MRI. Robust performance across diverse protocols and evaluation with complementary metrics that match state-of-the-art benchmarks supports its integration into clinical and research workflows, helping to overcome a key barrier to the broader adoption of free-running imaging.

AI-Powered Segmentation and Prognosis with Missing MRI in Pediatric Brain Tumors

Chrysochoou, D., Gandhi, D., Adib, S., Familiar, A., Khalili, N., Khalili, N., Ware, J. B., Tu, W., Jain, P., Anderson, H., Haldar, S., Storm, P. B., Franson, A., Prados, M., Kline, C., Mueller, S., Resnick, A., Vossough, A., Davatzikos, C., Nabavizadeh, A., Fathi Kazerooni, A.

medrxiv logopreprintJul 16 2025
ImportanceBrain MRI is the main imaging modality for pediatric brain tumors (PBTs); however, incomplete MRI exams are common in pediatric neuro-oncology settings and pose a barrier to the development and application of deep learning (DL) models, such as tumor segmentation and prognostic risk estimation. ObjectiveTo evaluate DL-based strategies (image-dropout training and generative image synthesis) and heuristic imputation approaches for handling missing MRI sequences in PBT imaging from clinical acquisition protocols, and to determine their impact on segmentation accuracy and prognostic risk estimation. DesignThis cohort study included 715 patients from the Childrens Brain Tumor Network (CBTN) and BraTS-PEDs, and 43 patients with longitudinal MRI (157 timepoints) from PNOC003/007 clinical trials. We developed a dropout-trained nnU-Net tumor segmentation model that randomly omitted FLAIR and/or T1w (no contrast) sequences during training to simulate missing inputs. We compared this against three imputation approaches: a generative model for image synthesis, copy-substitution heuristics, and zeroed missing inputs. Model-generated tumor volumes from each segmentation method were compared and evaluated against ground truth (expert manual segmentations) and incorporated into time-varying Cox regression models for survival analysis. SettingMulti-institutional PBT datasets and longitudinal clinical trial cohorts. ParticipantsAll patients had multi-parametric MRI and expert manual segmentations. The PNOC cohort had a median of three imaging timepoints and associated clinical data. Main Outcomes and MeasuresSegmentation accuracy (Dice scores), image quality metrics for synthesized scans (SSIM, PSNR, MSE), and survival discrimination (C-index, hazard ratios). ResultsThe dropout model achieved robust segmentation under missing MRI, with [&le;]0.04 Dice drop and a stable C-index of 0.65 compared to complete-input performance. DL-based MRI synthesis achieved high image quality (SSIM > 0.90) and removed artifacts, benefiting visual interpretability. Performance was consistent across cohorts and missing data scenarios. Conclusion and RelevanceModality-dropout training yields robust segmentation and risk-stratification on incomplete pediatric MRI without the computational and clinical complexity of synthesis approaches. Image synthesis, though less effective for these tasks, provides complementary benefits for artifact removal and qualitative assessment of missing or corrupted MRI scans. Together, these approaches can facilitate broader deployment of AI tools in real-world pediatric neuro-oncology settings.

SLOTMFound: Foundation-Based Diagnosis of Multiple Sclerosis Using Retinal SLO Imaging and OCT Thickness-maps

Esmailizadeh, R., Aghababaei, A., Mirzaei, S., Arian, R., Kafieh, R.

medrxiv logopreprintJul 15 2025
Multiple Sclerosis (MS) is a chronic autoimmune disorder of the central nervous system that can lead to significant neurological disability. Retinal imaging--particularly Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT)--provides valuable biomarkers for early MS diagnosis through non-invasive visualization of neurodegenerative changes. This study proposes a foundation-based bi-modal classification framework that integrates SLO images and OCT-derived retinal thickness maps for MS diagnosis. To facilitate this, we introduce two modality-specific foundation models--SLOFound and TMFound--fine-tuned from the RETFound-Fundus backbone using an independent dataset of 203 healthy eyes, acquired at Noor Ophthalmology Hospital with the Heidelberg Spectralis HRA+OCT system. This dataset, which contains only normal cases, was used exclusively for encoder adaptation and is entirely disjoint from the classification dataset. For the classification stage, we use a separate dataset comprising IR-SLO images from 32 MS patients and 70 healthy controls, collected at the Kashani Comprehensive MS Center in Isfahan, Iran. We first assess OCT-derived maps layer-wise and identify the Ganglion Cell-Inner Plexiform Layer (GCIPL) as the most informative for MS detection. All subsequent analyses utilize GCIPL thickness maps in conjunction with SLO images. Experimental evaluations on the MS classification dataset demonstrate that our foundation-based bi-modal model outperforms unimodal variants and a prior ResNet-based state-of-the-art model, achieving a classification accuracy of 97.37%, with perfect sensitivity (100%). These results highlight the effectiveness of leveraging pre-trained foundation models, even when fine-tuned on limited data, to build robust, efficient, and generalizable diagnostic tools for MS in medical imaging contexts where labeled datasets are often scarce.

Explainable AI for Precision Oncology: A Task-Specific Approach Using Imaging, Multi-omics, and Clinical Data

Park, Y., Park, S., Bae, E.

medrxiv logopreprintJul 14 2025
Despite continued advances in oncology, cancer remains a leading cause of global mortality, highlighting the need for diagnostic and prognostic tools that are both accurate and interpretable. Unimodal approaches often fail to capture the biological and clinical complexity of tumors. In this study, we present a suite of task-specific AI models that leverage CT imaging, multi-omics profiles, and structured clinical data to address distinct challenges in segmentation, classification, and prognosis. We developed three independent models across large public datasets. Task 1 applied a 3D U-Net to segment pancreatic tumors from CT scans, achieving a Dice Similarity Coefficient (DSC) of 0.7062. Task 2 employed a hierarchical ensemble of omics-based classifiers to distinguish tumor from normal tissue and classify six major cancer types with 98.67% accuracy. Task 3 benchmarked classical machine learning models on clinical data for prognosis prediction across three cancers (LIHC, KIRC, STAD), achieving strong performance (e.g., C-index of 0.820 in KIRC, AUC of 0.978 in LIHC). Across all tasks, explainable AI methods such as SHAP and attention-based visualization enabled transparent interpretation of model outputs. These results demonstrate the value of tailored, modality-aware models and underscore the clinical potential of applying such tailored AI systems for precision oncology. Technical FoundationsO_LISegmentation (Task 1): A custom 3D U-Net was trained using the Task07_Pancreas dataset from the Medical Segmentation Decathlon (MSD). CT images were preprocessed with MONAI-based pipelines, resampled to (64, 96, 96) voxels, and intensity-windowed to HU ranges of -100 to 240. C_LIO_LIClassification (Task 2): Multi-omics data from TCGA--including gene expression, methylation, miRNA, CNV, and mutation profiles--were log-transformed and normalized. Five modality-specific LightGBM classifiers generated meta-features for a late-fusion ensemble. Stratified 5-fold cross-validation was used for evaluation. C_LIO_LIPrognosis (Task 3): Clinical variables from TCGA were curated and imputed (median/mode), with high-missing-rate columns removed. Survival models (e.g., Cox-PH, Random Forest, XGBoost) were trained with early stopping. No omics or imaging data were used in this task. C_LIO_LIInterpretability: SHAP values were computed for all tree-based models, and attention-based overlays were used in imaging tasks to visualize salient regions. C_LI

A View-Agnostic Deep Learning Framework for Comprehensive Analysis of 2D-Echocardiography

Anisuzzaman, D. M., Malins, J. G., Jackson, J. I., Lee, E., Naser, J. A., Rostami, B., Bird, J. G., Spiegelstein, D., Amar, T., Ngo, C. C., Oh, J. K., Pellikka, P. A., Thaden, J. J., Lopez-Jimenez, F., Poterucha, T. J., Friedman, P. A., Pislaru, S., Kane, G. C., Attia, Z. I.

medrxiv logopreprintJul 11 2025
Echocardiography traditionally requires experienced operators to select and interpret clips from specific viewing angles. Clinical decision-making is therefore limited for handheld cardiac ultrasound (HCU), which is often collected by novice users. In this study, we developed a view-agnostic deep learning framework to estimate left ventricular ejection fraction (LVEF), patient age, and patient sex from any of several views containing the left ventricle. Model performance was: (1) consistently strong across retrospective transthoracic echocardiography (TTE) datasets; (2) comparable between prospective HCU versus TTE (625 patients; LVEF r2 0.80 vs. 0.86, LVEF [> or [&le;]40%] AUC 0.981 vs. 0.993, age r2 0.85 vs. 0.87, sex classification AUC 0.985 vs. 0.996); (3) comparable between prospective HCU data collected by experts versus novice users (100 patients; LVEF r2 0.78 vs. 0.66, LVEF AUC 0.982 vs. 0.966). This approach may broaden the clinical utility of echocardiography by lessening the need for user expertise in image acquisition.
Page 1 of 440 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.