Sort by:
Page 1 of 16 results

Dual-Branch Efficient Net Architecture for ACL Tear Detection in Knee MRI

kota, T., Garofalaki, K., Whitely, F., Evdokimenko, E., Smartt, E.

medrxiv logopreprintSep 13 2025
We propose a deep learning approach for detecting anterior cruciate ligament (ACL) tears from knee MRI using a dual-branch convolutional architecture. The model independently processes sagittal and coronal MRI sequences using EfficientNet-B2 backbones with spatial attention modules, followed by a late fusion classifier for binary prediction. MRI volumes are standardized to a fixed number of slices, and domain-specific normalization and data augmentation are applied to enhance model robustness. Trained on a stratified 80/20 split of the MRNet dataset, our best model--using the Adam optimizer and a learning rate of 1e-4--achieved a validation AUC of 0.98 and a test AUC of 0.93. These results show strong predictive performance while maintaining computational efficiency. This work demonstrates that accurate diagnosis is achievable using only two anatomical planes and sets the stage for further improvements through architectural enhancements and broader data integration.

The Effect of Image Resolution on the Performance of Deep Learning Algorithms in Detecting Calcaneus Fractures on X-Ray

Yee, N. J., Taseh, A., Ghandour, S., Sirls, E., Halai, M., Whyne, C., DiGiovanni, C. W., Kwon, J. Y., Ashkani-Esfahani, S. J.

medrxiv logopreprintSep 7 2025
PurposeTo evaluate convolutional neural network (CNN) model training strategies that optimize the performance of calcaneus fracture detection on radiographs at different image resolutions. Materials and MethodsThis retrospective study included foot radiographs from a single hospital between 2015 and 2022 for a total of 1,775 x-ray series (551 fractures; 1,224 without) and was split into training (70%), validation (15%), and testing (15%). ImageNet pre-trained ResNet models were fine-tuned on the dataset. Three training strategies were evaluated: 1) single size: trained exclusively on 128x128, 256x256, 512x512, 640x640, or 900x900 radiographs (5 model sets); 2) curriculum learning: trained exclusively on 128x128 radiographs then exclusively on 256x256, then 512x512, then 640x640, and finally on 900x900 (5 model sets); and 3) multi-scale augmentation: trained on x-ray images resized along continuous dimensions between 128x128 to 900x900 (1 model set). Inference time and training time were compared. ResultsMulti-scale augmentation trained models achieved the highest average area under the Receiver Operating Characteristic curve of 0.938 [95% CI: 0.936 - 0.939] for a single model across image resolutions compared to the other strategies without prolonging training or inference time. Using the optimal model sets, curriculum learning had the highest sensitivity on in-distribution low-resolution images (85.4% to 90.1%) and on out-of-distribution high-resolution images (78.2% to 89.2%). However, curriculum learning models took significantly longer to train (11.8 [IQR: 11.1-16.4] hours; P<.001). ConclusioWhile 512x512 images worked well for fracture identification, curriculum learning and multi-scale augmentation training strategies algorithmically improved model robustness towards different image resolutions without requiring additional annotated data. Summary statementDifferent deep learning training strategies affect performance in detecting calcaneus fractures on radiographs across in- and out-of-distribution image resolutions, with a multi-scale augmentation strategy conferring the greatest overall performance improvement in a single model. Key pointsO_LITraining strategies addressing differences in radiograph image resolution (or pixel dimensions) could improve deep learning performance. C_LIO_LIThe highest average performance across different image resolutions in a single model was achieved by multi-scale augmentation, where the sampled training dataset is uniformly resized between square resolutions of 128x128 to 900x900. C_LIO_LICompared to model training on a single image resolution, sequentially training on increasingly higher resolution images up to 900x900 (i.e., curriculum learning) resulted in higher fracture detection performance on images resolutions between 128x128 and 2048x2048. C_LI

AI-based synthetic simulation CT generation from diagnostic CT for simulation-free workflow of spinal palliative radiotherapy

Han, Y., Hanania, A. N., Siddiqui, Z. A., Ugarte, V., Zhou, B., Mohamed, A. S. R., Pathak, P., Hamstra, D. A., Sun, B.

medrxiv logopreprintSep 5 2025
Purpose/ObjectiveCurrent radiotherapy (RT) planning workflows rely on pre-treatment simulation CT (sCT), which can significantly delay treatment initiation, particularly in resource-constrained settings. While diagnostic CT (dCT) offers a potential alternative for expedited planning, inherent geometric discrepancies from sCT in patient positioning and table curvature limit its direct use for accurate RT planning. This study presents a novel AI-based method designed to overcome these limitations by generating synthetic simulation CT (ssCT) directly from standard dCT for spinal palliative RT, aiming to eliminate the need for sCT and accelerate the treatment workflow. Materials/MethodsssCTs were generated using two neural network models to adjust spine position and correct table curvature. The neural networks use a three-layer structure (ReLU activation), optimized by Adam with MSE loss and MAE metrics. The models were trained on paired dCT and sCT images from 30 patients undergoing palliative spine radiotherapy from a safety-net hospital, with 22 cases used for training and 8 for testing. To explore institutional dependence, the models were also tested on 7 patients from an academic medical center (AMC). To evaluate ssCT accuracy, both ssCT and dCT were aligned with sCT using the same frame of reference rigid registration on bone windows. Dosimetric differences were assessed by comparing dCT vs. sCT and ssCT vs. sCT, quantifying deviations in dose-volume histogram (DVH) metrics, including Dmean, Dmax, D95, D99, V100, V107, and root-mean-square (RMS) differences. The imaging and plan quality was assessed by four radiation oncologists using a Likert score. The Wilcoxon signed-rank test was used to determine whether there is a significant difference between the two methods. ResultsFor the safety-net hospital cases, the generated ssCT demonstrated significantly improved geometric and dosimetric accuracy compared to dCT. ssCT reduced the mean difference in key dosimetric parameters (e.g., Dmean difference decreased from 2.0% for dCT vs. sCT to 0.57% for ssCT vs. sCT with significant improvement under the Wilcoxon signed-rank test) and achieved a significant reduction in the RMS difference of DVH curves (from 6.4% to 2.2%). Furthermore, physician evaluations showed that ssCT was consistently rated as significantly superior for treatment planning images (mean scores improving from "Acceptable" for dCT to "Good to Perfect" for ssCT), reflecting improved confidence in target and tissue positioning. In the academic medical-center cohort--where technologists already apply meticulous pre-scan alignment--ssCT still yielded statistically significant, though smaller, improvements in several dosimetric endpoints and in observer ratings. ConclusionOur AI-driven approach successfully generates ssCT from dCT that achieves geometric and dosimetric accuracy comparable to sCT for spinal palliative RT planning. By specifically addressing critical discrepancies like spine position and table curvature, this method offers a robust approach to bypass the need for dedicated sCT simulations. This advancement has the potential to significantly streamline the RT workflow, reduce treatment uncertainties, and accelerate time to treatment, offering a highly promising solution for improving access to timely and accurate radiotherapy, especially in limited-resource environments.

Deep learning-based precision phenotyping of spine curvature identifies novel genetic risk loci for scoliosis in the UK Biobank

Zeosk, M., Kun, E., Reddy, S., Pandey, D., Xu, L., Wang, J. Y., Li, C., Gray, R. S., Wise, C. A., Otomo, N., Narasimhan, V. M.

medrxiv logopreprintSep 5 2025
Scoliosis is the most common developmental spinal deformity, but its genetic underpinnings remain only partially understood. To enhance the identification of scoliosis-related loci, we utilized whole body dual energy X-ray absorptiometry (DXA) scans from 57,887 individuals in the UK Biobank (UKB), and quantified spine curvature by applying deep learning models to segment then landmark vertebrae to measure the cumulative horizontal displacement of the spine from a central axis. On a subset of 120 individuals, our automated image-derived curvature measurements showed a correlation 0.92 with clinical Cobb angle assessments, supporting their validity as a proxy for scoliosis severity. To connect spinal curvature with its genetic basis we conducted a genome-wide association study (GWAS). Our quantitative imaging phenotype allowed us to identify 2 novel loci associated with scoliosis in a European population not seen in previous GWAS. These loci are in the gene SEM1/SHFM1 as well as on a lncRNA on chr 3 that is downstream of EDEM1 and upstream of GRM7. Genetic correlation analysis revealed significant overlap between our image-based GWAS and ICD-10 based GWAS in both the UKB and Biobank of Japan. We also showed that our quantitative GWAS had more statistical power to identify new loci than a case-control dataset with an order of magnitude larger sample size. Increased spine curvature was also associated with increased leg length discrepancy, reduced muscle strength and decreased bone density, and increased incidence of knee but not hip osteoarthritis. Our results illustrate the potential of using quantitative imaging phenotypes to uncover genetic associations that are challenging to capture with medical records alone and identify new loci for functional follow-up.

Detecting Fifth Metatarsal Fractures on Radiographs through the Lens of Smartphones: A FIXUS AI Algorithm

Taseh, A., Shah, A., Eftekhari, M., Flaherty, A., Ebrahimi, A., Jones, S., Nukala, V., Nazarian, A., Waryasz, G., Ashkani-Esfahani, S.

medrxiv logopreprintJul 18 2025
BackgroundFifth metatarsal (5MT) fractures are common but challenging to diagnose, particularly with limited expertise or subtle fractures. Deep learning shows promise but faces limitations due to image quality requirements. This study develops a deep learning model to detect 5MT fractures from smartphone-captured radiograph images, enhancing accessibility of diagnostic tools. MethodsA retrospective study included patients aged >18 with 5MT fractures (n=1240) and controls (n=1224). Radiographs (AP, oblique, lateral) from Electronic Health Records (EHR) were obtained and photographed using a smartphone, creating a new dataset (SP). Models using ResNet 152V2 were trained on EHR, SP, and combined datasets, then evaluated on a separate smartphone test dataset (SP-test). ResultsOn validation, the SP model achieved optimal performance (AUROC: 0.99). On the SP-test dataset, the EHR models performance decreased (AUROC: 0.83), whereas SP and combined models maintained high performance (AUROC: 0.99). ConclusionsSmartphone-specific deep learning models effectively detect 5MT fractures, suggesting their practical utility in resource-limited settings.

Beyond Benchmarks: Towards Robust Artificial Intelligence Bone Segmentation in Socio-Technical Systems

Xie, K., Gruber, L. J., Crampen, M., Li, Y., Ferreira, A., Tappeiner, E., Gillot, M., Schepers, J., Xu, J., Pankert, T., Beyer, M., Shahamiri, N., ten Brink, R., Dot, G., Weschke, C., van Nistelrooij, N., Verhelst, P.-J., Guo, Y., Xu, Z., Bienzeisler, J., Rashad, A., Flügge, T., Cotton, R., Vinayahalingam, S., Ilesan, R., Raith, S., Madsen, D., Seibold, C., Xi, T., Berge, S., Nebelung, S., Kodym, O., Sundqvist, O., Thieringer, F., Lamecker, H., Coppens, A., Potrusil, T., Kraeima, J., Witjes, M., Wu, G., Chen, X., Lambrechts, A., Cevidanes, L. H. S., Zachow, S., Hermans, A., Truhn, D., Alves,

medrxiv logopreprintJun 13 2025
Despite the advances in automated medical image segmentation, AI models still underperform in various clinical settings, challenging real-world integration. In this multicenter evaluation, we analyzed 20 state-of-the-art mandibular segmentation models across 19,218 segmentations of 1,000 clinically resampled CT/CBCT scans. We show that segmentation accuracy varies by up to 25% depending on socio-technical factors such as voxel size, bone orientation, and patient conditions such as osteosynthesis or pathology. Higher sharpness, isotropic smaller voxels, and neutral orientation significantly improved results, while metallic osteosynthesis and anatomical complexity led to significant degradation. Our findings challenge the common view of AI models as "plug-and-play" tools and suggest evidence-based optimization recommendations for both clinicians and developers. This will in turn boost the integration of AI segmentation tools in routine healthcare.
Page 1 of 16 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.