Sort by:
Page 1 of 328 results
Next

Artificial Intelligence in Cardiac Amyloidosis: A Systematic Review and Meta-Analysis of Diagnostic Accuracy Across Imaging and Non-Imaging Modalities

Kumbalath, R. M., Challa, D., Patel, M. K., Prajapati, S. D., Kumari, K., mehan, A., Chopra, R., Somegowda, Y. M., Khan, R., Ramteke, H. D., juneja, M.

medrxiv logopreprintSep 18 2025
IntroductionCardiac amyloidosis (CA) is an underdiagnosed infiltrative cardiomyopathy associated with poor outcomes if not detected early. Artificial intelligence (AI) has emerged as a promising adjunct to conventional diagnostics, leveraging imaging and non-imaging data to improve recognition of CA. However, evidence on the comparative diagnostic performance of AI across modalities remains fragmented. This meta-analysis aimed to synthesize and quantify the diagnostic performance of AI models in CA across multiple modalities. MethodsA systematic literature search was conducted in PubMed, Embase, Web of Science, and Cochrane Library from inception to August 2025. Only published observational studies applying AI to the diagnosis of CA were included. Data were extracted on patient demographics, AI algorithms, modalities, and diagnostic performance metrics. Risk of bias was assessed using QUADAS-2, and certainty of evidence was graded using GRADE. Random-effects meta-analysis (REML) was performed to pool accuracy, precision, recall, F1-score, and area under the curve (AUC). ResultsFrom 115 screened studies, 25 observational studies met the inclusion criteria, encompassing a total of 589,877 patients with a male predominance (372,458 males, 63.2%; 221,818 females, 36.6%). A wide range of AI algorithms were applied, most notably convolutional neural networks (CNNs), which accounted for 526,879 patients, followed by 3D-ResNet architectures (56,872 patients), hybrid segmentation-classification networks (3,747), and smaller studies employing random forests (636), Res-CRNN (89), and traditional machine learning approaches (769). Data modalities included ECG (341,989 patients), echocardiography (>70,000 patients across multiple cohorts), scintigraphy ([~]24,000 patients), cardiac MRI ([~]900 patients), CT (299 patients), and blood tests (261 patients). Pooled diagnostic performance across all modalities demonstrated an overall accuracy of 84.0% (95% CI: 74.6-93.5), precision of 85.8% (95% CI: 79.6-92.0), recall (sensitivity) of 89.6% (95% CI: 85.7-93.4), and an F1-score of 87.2% (95% CI: 81.8-92.6). Area under the curve (AUC) analysis revealed modality-specific variation, with scintigraphy achieving the highest pooled AUC (99.7%), followed by MRI (96.8%), echocardiography (94.3%), blood tests (95.0%), CT (98.0%), and ECG (88.5%). Subgroup analysis confirmed significant differences between modalities (p < 0.001), with MRI and scintigraphy showing consistent high performance and low-to-moderate heterogeneity, while echocardiography displayed moderate accuracy but marked variability, and ECG demonstrated the lowest and most heterogeneous results. ConclusionAI demonstrates strong potential for improving CA diagnosis, with MRI and scintigraphy providing the most reliable performance, echocardiography offering an accessible but heterogeneous option, and ECG models remaining least consistent. While promising, future prospective multicenter studies are needed to validate AI models, improve subtype discrimination, and optimize multimodal integration for real-world clinical use.

Compartment-specific Fat Distribution Profiles have Distinct Relationships with Cardiovascular Ageing and Future Cardiovascular Events

Maldonado-Garcia, C., Salih, A., Neubauer, S., Petersen, S. E., Raisi-Estabragh, Z.

medrxiv logopreprintSep 18 2025
Obesity is a global public health priority and a major risk factor for cardiovascular disease (CVD). Emerging evidence indicates variation in pathologic consequences of obesity deposition across different body compartments. Biological heart age may be estimated from imaging measures of cardiac structure and function and captures risk beyond traditional measures. Using cardiac and abdominal magnetic resonance imaging (MRI) from 34,496 UK Biobank participants and linked health record data, we investigated how compartment-specific obesity phenotypes relate to cardiac ageing and incident CVD risk. Biological heart age was estimated using machine learning from 56 cardiac MRI phenotypes. K-means clustering of abdominal visceral (VAT), abdominal subcutaneous (ASAT), and pericardial (PAT) adiposity identified a high-risk cluster (characterised by greater adiposity across all three depots) associated with accelerated cardiac ageing - and a lower-risk cluster linked to decelerated ageing. These clusters provided more precise stratification of cardiovascular ageing trajectories than established body mass index categories. Mediation analysis showed that VAT and PAT explained 13.7% and 11.9% of obesity-associated CVD risk, respectively, whereas ASAT contributed minimally, with effects more pronounced in males. Thus, cardiovascular risk appears to be driven primarily by visceral and pericardial rather than subcutaneous fat. Our findings reveal a distinct risk profile of compartment-specific fat distributions and show the importance of pericardial and visceral fat as drivers of greater cardiovascular ageing. Advanced image-defined adiposity profiling may enhance CVD risk prediction beyond anthropometric measures and enhance mechanistic understanding.

The HeartMagic prospective observational study protocol - characterizing subtypes of heart failure with preserved ejection fraction

Meyer, P., Rocca, A., Banus, J., Ogier, A. C., Georgantas, C., Calarnou, P., Fatima, A., Vallee, J.-P., Deux, J.-F., Thomas, A., Marquis, J., Monney, P., Lu, H., Ledoux, J.-B., Tillier, C., Crowe, L. A., Abdurashidova, T., Richiardi, J., Hullin, R., van Heeswijk, R. B.

medrxiv logopreprintSep 16 2025
Introduction Heart failure (HF) is a life-threatening syndrome with significant morbidity and mortality. While evidence-based drug treatments have effectively reduced morbidity and mortality in HF with reduced ejection fraction (HFrEF), few therapies have been demonstrated to improve outcomes in HF with preserved ejection fraction (HFpEF). The multifaceted clinical presentation is one of the main reasons why the current understanding of HFpEF remains limited. This may be caused by the existence of several HFpEF disease subtypes that each need different treatments. There is therefore an unmet need for a holistic approach that combines comprehensive imaging with metabolomic, transcriptomic and genomic mapping to subtype HFpEF patients. This protocol details the approach employed in the HeartMagic study to address this gap in understanding. Methods This prospective multi-center observational cohort study will include 500 consecutive patients with actual or recent hospitalization for treatment of HFpEF at two Swiss university hospitals, along with 50 age-matched HFrEF patients and 50 age-matched healthy controls. Diagnosis of heart failure is based on clinical signs and symptoms and subgrouping HF patients is based on the left-ventricular ejection fraction. In addition to routine clinical workup, participants undergo genomic, transcriptomic, and metabolomic analyses, while the anatomy, composition, and function of the heart are quantified by comprehensive echocardiography and magnetic resonance imaging (MRI). Quantitative MRI is also applied to characterize the kidney. The primary outcome is a composite of one-year cardiovascular mortality or rehospitalization. Machine learning (ML) based multi-modal clustering will be employed to identify distinct HFpEF subtypes in the holistic data. The clinical importance of these subtypes shall be evaluated based on their association with the primary outcome. Statistical analysis will include group comparisons across modalities, survival analysis for the primary outcome, and integrative multi-modal clustering combining clinical, imaging, ECG, genomic, transcriptomic, and metabolomic data to identify and validate HFpEF subtypes. Discussion The integration of comprehensive MRI with extensive genomic and metabolomic profiling in this study will result in an unprecedented panoramic view of HFpEF and should enable us to distinguish functional subgroups of HFpEF patients. This approach has the potential to provide unprecedented insights on HFpEF disease and should provide a basis for personalized therapies. Beyond this, identifying HFpEF subtypes with specific molecular and structural characteristics could lead to new targeted pharmacological interventions, with the potential to improve patient outcomes.

Predicting Rejection Risk in Heart Transplantation: An Integrated Clinical-Histopathologic Framework for Personalized Post-Transplant Care

Kim, D. D., Madabhushi, A., Margulies, K. B., Peyster, E. G.

medrxiv logopreprintSep 8 2025
BackgroundCardiac allograft rejection (CAR) remains the leading cause of early graft failure after heart transplantation (HT). Current diagnostics, including histologic grading of endomyocardial biopsy (EMB) and blood-based assays, lack accurate predictive power for future CAR risk. We developed a predictive model integrating routine clinical data with quantitative morphologic features extracted from routine EMBs to demonstrate the precision-medicine potential of mining existing data sources in post-HT care. MethodsIn a retrospective cohort of 484 HT recipients with 1,188 EMB encounters within 6 months post-transplant, we extracted 370 quantitative pathology features describing lymphocyte infiltration and stromal architecture from digitized H&E-stained slides. Longitudinal clinical data comprising 268 variables--including lab values, immunosuppression records, and prior rejection history--were aggregated per patient. Using the XGBoost algorithm with rigorous cross-validation, we compared models based on four different data sources: clinical-only, morphology-only, cross-sectional-only, and fully integrated longitudinal data. The top predictors informed the derivation of a simplified Integrated Rejection Risk Index (IRRI), which relies on just 4 clinical and 4 morphology risk facts. Model performance was evaluated by AUROC, AUPRC, and time-to-event hazard ratios. ResultsThe fully integrated longitudinal model achieved superior predictive accuracy (AUROC 0.86, AUPRC 0.74). IRRI stratified patients into risk categories with distinct future CAR hazards: high-risk patients showed a markedly increased CAR risk (HR=6.15, 95% CI: 4.17-9.09), while low-risk patients had significantly reduced risk (HR=0.52, 95% CI: 0.33-0.84). This performance exceeded models based on just cross-sectional or single-domain data, demonstrating the value of multi-modal, temporal data integration. ConclusionsBy integrating longitudinal clinical and biopsy morphologic features, IRRI provides a scalable, interpretable tool for proactive CAR risk assessment. This precision-based approach could support risk-adaptive surveillance and immunosuppression management strategies, offering a promising pathway toward safer, more personalized post-HT care with the potential to reduce unnecessary procedures and improve outcomes. Clinical PerspectiveWhat is new? O_LICurrent tools for cardiac allograft monitoring detect rejection only after it occurs and are not designed to forecast future risk. This leads to missed opportunities for early intervention, avoidable patient injury, unnecessary testing, and inefficiencies in care. C_LIO_LIWe developed a machine learning-based risk index that integrates clinical features, quantitative biopsy morphology, and longitudinal temporal trends to create a robust predictive framework. C_LIO_LIThe Integrated Rejection Risk Index (IRRI) provides highly accurate prediction of future allograft rejection, identifying both high- and low-risk patients up to 90 days in advance - a capability entirely absent from current transplant management. C_LI What are the clinical implications? O_LIIntegrating quantitative histopathology with clinical data provides a more precise, individualized estimate of rejection risk in heart transplant recipients. C_LIO_LIThis framework has the potential to guide post-transplant surveillance intensity, immunosuppressive management, and patient counseling. C_LIO_LIAutomated biopsy analysis could be incorporated into digital pathology workflows, enabling scalable, multicenter application in real-world transplant care. C_LI

Whole-genome sequencing analysis of left ventricular structure and sphericity in 80,000 people

Pirruccello, J.

medrxiv logopreprintAug 26 2025
BackgroundSphericity is a measurement of how closely an object approximates a globe. The sphericity of the blood pool of the left ventricle (LV), is an emerging measure linked to myocardial dysfunction. MethodsVideo-based deep learning models were trained for semantic segmentation (pixel labeling) in cardiac magnetic resonance imaging in 84,327 UK Biobank participants. These labeled pixels were co-oriented in 3D and used to construct surface meshes. LV ejection fraction, mass, volume, surface area, and sphericity were calculated. Epidemiologic and genetic analyses were conducted. Polygenic score validation was performed in All of Us. Results3D LV sphericity was found to be more strongly associated (HR 10.3 per SD, 95% CI 6.1-17.3) than LV ejection fraction (HR 2.9 per SD reduction, 95% CI 2.4-3.6) with dilated cardiomyopathy (DCM). Paired with whole genome sequencing, these measurements linked LV structure and function to 366 distinct common and low-frequency genetic loci--and 17 genes with rare variant burden--spanning a 25-fold range of effect size. The discoveries included 22 out of the 26 loci that were recently associated with DCM. LV genome-wide polygenic scores were equivalent to, or outperformed, dedicated hypertrophic cardiomyopathy (HCM) and DCM polygenic scores for disease prediction. In All of Us, those in the polygenic extreme 1% had an estimated 6.6% risk of DCM by age 80, compared to 33% for carriers of rare truncating variants in the gene TTN. Conclusions3D sphericity is a distinct, heritable LV measurement that is intricately linked to risk for HCM and DCM. The genetic findings from this study raise the possibility that the majority of common genetic loci that will be discovered in future large-scale DCM analyses are present in the current results.

Integrating Imaging-Derived Clinical Endotypes with Plasma Proteomics and External Polygenic Risk Scores Enhances Coronary Microvascular Disease Risk Prediction

Venkatesh, R., Cherlin, T., Penn Medicine BioBank,, Ritchie, M. D., Guerraty, M., Verma, S. S.

medrxiv logopreprintAug 21 2025
Coronary microvascular disease (CMVD) is an underdiagnosed but significant contributor to the burden of ischemic heart disease, characterized by angina and myocardial infarction. The development of risk prediction models such as polygenic risk scores (PRS) for CMVD has been limited by a lack of large-scale genome-wide association studies (GWAS). However, there is significant overlap between CMVD and enrollment criteria for coronary artery disease (CAD) GWAS. In this study, we developed CMVD PRS models by selecting variants identified in a CMVD GWAS and applying weights from an external CAD GWAS, using CMVD-associated loci as proxies for the genetic risk. We integrated plasma proteomics, clinical measures from perfusion PET imaging, and PRS to evaluate their contributions to CMVD risk prediction in comprehensive machine and deep learning models. We then developed a novel unsupervised endotyping framework for CMVD from perfusion PET-derived myocardial blood flow data, revealing distinct patient subgroups beyond traditional case-control definitions. This imaging-based stratification substantially improved classification performance alongside plasma proteomics and PRS, achieving AUROCs between 0.65 and 0.73 per class, significantly outperforming binary classifiers and existing clinical models, highlighting the potential of this stratification approach to enable more precise and personalized diagnosis by capturing the underlying heterogeneity of CMVD. This work represents the first application of imaging-based endotyping and the integration of genetic and proteomic data for CMVD risk prediction, establishing a framework for multimodal modeling in complex diseases.

A Cardiac-specific CT Foundation Model for Heart Transplantation

Xu, H., Woicik, A., Asadian, S., Shen, J., Zhang, Z., Nabipoor, A., Musi, J. P., Keenan, J., Khorsandi, M., Al-Alao, B., Dimarakis, I., Chalian, H., Lin, Y., Fishbein, D., Pal, J., Wang, S., Lin, S.

medrxiv logopreprintAug 19 2025
Heart failure is a major cause of morbitidy and mortality, with the severest forms requiring heart transplantation. Heart size matching between the donor and recipient is a critical step in ensuring a successful transplantation. Currently, a set of equations based on population measures of height, weight, sex and age, viz. predicted heart mass (PHM), are used but can be improved upon by personalized information from recipient and donor chest CT images. Here, we developed GigaHeart, the first heart-specific foundation model pretrained on 180,897 chest CT volumes from 56,607 patients. The key idea of GigaHeart is to direct the foundation models attention towards the heart by contrasting the heart region and the entire chest, thereby encouraging the model to capture fine-grained cardiac features. GigaHeart achieves the best performance on 8 cardiac-specific classification tasks and further, exhibits superior performance on cross-modal tasks by jointly modeling CT images and reports. We similarly developed a thorax-specific foundation model and observed promising performance on 9 thorax-specific tasks, indicating the potential to extend GigaHeart to other organ-specific foundation models. More importantly, GigaHeart addresses the heart sizing problem. It avoids oversizing by correctly segmenting the sizes of hearts of donors and recipients. In regressions against actual heart masses, our AI-segmented total cardiac volumes (TCVs) has a 33.3% R2 improvement when compared to PHM. Meanwhile, GigaHeart also solves the undersizing problem by adding a regression layer to the model. Specifically, GigaHeart reduces the mean squared error by 57% against PHM. In total, we show that GigaHeart increases the acceptable range of donor heart sizes and matches more accurately than the widely used PHM equations. In all, GigaHeart is a state-of-the-art, cardiac-specific foundation model with the key innovation of directing the models attention to the heart. GigaHeart can be finetuned for accomplishing a number of tasks accurately, of which AI-assisted heart sizing is a novel example.

Multi-View Echocardiographic Embedding for Accessible AI Development

Tohyama, T., Han, A., Yoon, D., Paik, K., Gow, B., Izath, N., Kpodonu, J., Celi, L. A.

medrxiv logopreprintAug 19 2025
Background and AimsEchocardiography serves as a cornerstone of cardiovascular diagnostics through multiple standardized imaging views. While recent AI foundation models demonstrate superior capabilities across cardiac imaging tasks, their massive computational requirements and reliance on large-scale datasets create accessibility barriers, limiting AI development to well-resourced institutions. Vector embedding approaches offer promising solutions by leveraging compact representations from original medical images for downstream applications. Furthermore, demographic fairness remains critical, as AI models may incorporate biases that confound clinically relevant features. We developed a multi-view encoder framework to address computational accessibility while investigating demographic fairness challenges. MethodsWe utilized the MIMIC-IV-ECHO dataset (7,169 echocardiographic studies) to develop a transformer-based multi-view encoder that aggregates view-level representations into study-level embeddings. The framework incorporated adversarial learning to suppress demographic information while maintaining clinical performance. We evaluated performance across 21 binary classification tasks encompassing echocardiographic measurements and clinical diagnoses, comparing against foundation model baselines with varying adversarial weights. ResultsThe multi-view encoder achieved a mean improvement of 9.0 AUC points (12.0% relative improvement) across clinical tasks compared to foundation model embeddings. Performance remained robust with limited echocardiographic views compared to the conventional approach. However, adversarial learning showed limited effectiveness in reducing demographic shortcuts, with stronger weighting substantially compromising diagnostic performance. ConclusionsOur framework democratizes advanced cardiac AI capabilities, enabling substantial diagnostic improvements without massive computational infrastructure. While algorithmic approaches to demographic fairness showed limitations, the multi-view encoder provides a practical pathway for broader AI adoption in cardiovascular medicine with enhanced efficiency in real-world clinical settings. Structured graphical abstract or graphical abstractO_ST_ABSKey QuestionC_ST_ABSCan multi-view encoder frameworks achieve superior diagnostic performance compared to foundation model embeddings while reducing computational requirements and maintaining robust performance with fewer echocardiographic views for cardiac AI applications? Key FindingMulti-view encoder achieved 12.0% relative improvement (9.0 AUC points) across 21 cardiac tasks compared to foundation model baselines, with efficient 512-dimensional vector embeddings and robust performance using fewer echocardiographic views. Take-home MessageVector embedding approaches with attention-based multi-view integration significantly improve cardiac diagnostic performance while reducing computational requirements, offering a pathway toward more efficient AI implementation in clinical settings. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=83 SRC="FIGDIR/small/25333725v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@a75818org.highwire.dtl.DTLVardef@88a588org.highwire.dtl.DTLVardef@12bad06_HPS_FORMAT_FIGEXP M_FIG C_FIG Translational PerspectiveOur proposed multi-view encoder framework overcomes critical barriers to the widespread adoption of artificial intelligence in echocardiography. By dramatically reducing computational requirements, the multi-view encoder approach allows smaller healthcare institutions to develop sophisticated AI models locally. The framework maintains robust performance with fewer echocardiographic examinations, which addresses real-world clinical constraints where comprehensive imaging is not feasible due to patient factors or time limitations. This technology provides a practical way to democratize advanced cardiac AI capabilities, which could improve access to cardiovascular care across diverse healthcare settings while reducing dependence on proprietary datasets and massive computational resources.

Predicting coronary artery abnormalities in Kawasaki disease: Model development and external validation

Wang, Q., Kimura, Y., Oba, J., Ishikawa, T., Ohnishi, T., Akahoshi, S., Iio, K., Morikawa, Y., Sakurada, K., Kobayashi, T., Miura, M.

medrxiv logopreprintAug 12 2025
BackgroundKawasaki disease (KD) is an acute, pediatric vasculitis associated with coronary artery abnormality (CAA) development. Echocardiography at month 1 post-diagnosis remains the standard for CAA surveillance despite limitations, including patient distress and increased healthcare burden. With declining CAA incidence due to improved treatment, the need for routine follow-up imaging is being reconsidered. This study aimed to develop and externally validate models for predicting CAA development and guide the need for echocardiography. MethodsThis study used two prospective multicenter Japanese registries: PEACOCK for model development and internal validation, and Post-RAISE for external validation. The primary outcome was CAA at the month 1 follow-up, defined as a maximum coronary artery Z score (Zmax) [&ge;] 2. Twenty-nine clinical, laboratory, echocardiographic, and treatment-related variables obtained within one week of diagnosis were selected as predictors. The models included simple models using the previous Zmax as a single predictor, logistic regression models, and machine learning models (LightGBM and XGBoost). Their discrimination, calibration, and clinical utility were assessed. ResultsAfter excluding patients without outcome data, 4,973 and 2,438 patients from PEACOCK and Post-RAISE, respectively, were included. The CAA incidence at month 1 was 5.5% and 6.8% for the respective group. For external validation, a simple model using the Zmax at week 1 produced an area under the curve of 0.79, which failed to improve by more than 0.02 after other variables were added or more complex models were used. Even the best-performing models with a highly sensitive threshold failed to reduce the need for echocardiography at month 1 by more than 30% while maintaining the number of undiagnosed CAA cases to less than ten. The predictive performance declined considerably when the Zmax was omitted from the multivariable models. ConclusionsThe Zmax at week 1 was the strongest predictor of CAA at month 1 post-diagnosis. Even advanced models incorporating additional variables failed to achieve a clinically acceptable trade-off between reducing the need for echocardiography and reducing the number of undiagnosed CAA cases. Until superior predictors are identified, echocardiography at month 1 should remain the standard practice. Clinical PerspectiveO_ST_ABSWhat Is New?C_ST_ABSO_LIThe maximum Z score on echocardiography one week after diagnosis was the strongest of 29 variables for predicting coronary artery abnormalities (CAA) in patients with Kawasaki disease. C_LIO_LIEven the most sensitive models had a suboptimal ability to predict CAA development and reduce the need for imaging studies, suggesting they have limited utility in clinical decision-making. C_LI What Are the Clinical Implications?O_LIUntil more accurate predictors are found or imaging strategies are optimized, performing echocardiography at one-month follow-up should remain the standard of care. C_LI

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.
Page 1 of 328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.