Sort by:
Page 1 of 219 results
Next

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

Myocardial Native T1 Mapping in the German National Cohort (NAKO): Associations with Age, Sex, and Cardiometabolic Risk Factors

Ammann, C., Gröschel, J., Saad, H., Rospleszcz, S., Schuppert, C., Hadler, T., Hickstein, R., Niendorf, T., Nolde, J. M., Schulze, M. B., Greiser, K. H., Decker, J. A., Kröncke, T., Küstner, T., Nikolaou, K., Willich, S. N., Keil, T., Dörr, M., Bülow, R., Bamberg, F., Pischon, T., Schlett, C. L., Schulz-Menger, J.

medrxiv logopreprintJul 17 2025
Background and AimsIn cardiovascular magnetic resonance (CMR), myocardial native T1 mapping enables quantitative, non-invasive tissue characterization and is sensitive to subclinical changes in myocardial structure and composition. We investigated how age, sex, and cardiometabolic risk factors are associated with myocardial T1 in a population-based analysis within the German National Cohort (NAKO). MethodsThis cross-sectional study included 29,573 prospectively enrolled participants who underwent CMR-based midventricular T1 mapping at 3.0 T, alongside clinical phenotyping. After artificial intelligence-assisted myocardial segmentation, a subset of 9,162 outliers was subjected to manual quality control according to clinical evaluation standards. Associations with cardiometabolic risk factors, identified through self-reported medical history, clinical chemistry, and blood pressure measurements, were evaluated using adjusted linear regression models. ResultsWomen had higher T1 values than men, with sex differences progressively declining with age. T1 was significantly elevated in individuals with diabetes ({beta}=3.91 ms; p<0.001), kidney disease ({beta}=3.44 ms; p<0.001), and current smoking ({beta}=6.67 ms; p<0.001). Conversely, hyperlipidaemia was significantly associated with lower T1 ({beta}=-4.41 ms; p<0.001). Associations with hypertension showed a sex-specific pattern: T1 was lower in women but increased with hypertension severity in men. ConclusionsMyocardial native T1 varies by sex and age and shows associations with major cardiometabolic risk factors. Notably, lower T1 times in participants with hyperlipidaemia may indicate a direct effect of blood lipids on the heart. Our findings support the utility of T1 mapping as a sensitive marker of early myocardial changes and highlight the sex-specific interplay between cardiometabolic health and myocardial tissue composition. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=139 SRC="FIGDIR/small/25331651v1_ufig1.gif" ALT="Figure 1"> View larger version (44K): [email protected]@131514borg.highwire.dtl.DTLVardef@d03877org.highwire.dtl.DTLVardef@2b2fec_HPS_FORMAT_FIGEXP M_FIG C_FIG Key QuestionHow are age, sex, and cardiometabolic risk factors associated with myocardial native T1, a quantitative magnetic resonance imaging marker of myocardial tissue composition, in a large-scale population-based evaluation within the German National Cohort (NAKO)? Key FindingT1 relaxation times were higher in women and gradually converged between sexes with age. Diabetes, kidney disease, smoking, and hypertension in men were associated with prolonged T1 times. Unexpectedly, hyperlipidaemia and hypertension in women showed a negative association with T1. Take-Home MessageNative T1 mapping is sensitive to subclinical myocardial changes and reflects a close interplay between metabolic and myocardial health. It reveals marked age-dependent sex differences and sex-specific responses in myocardial tissue composition to cardiometabolic risk factors.

Cardiac Function Assessment with Deep-Learning-Based Automatic Segmentation of Free-Running 4D Whole-Heart CMR

Ogier, A. C., Baup, S., Ilanjian, G., Touray, A., Rocca, A., Banus Cobo, J., Monton Quesada, I., Nicoletti, M., Ledoux, J.-B., Richiardi, J., Holtackers, R. J., Yerly, J., Stuber, M., Hullin, R., Rotzinger, D., van Heeswijk, R. B.

medrxiv logopreprintJul 17 2025
BackgroundFree-running (FR) cardiac MRI enables free-breathing ECG-free fully dynamic 5D (3D spatial+cardiac+respiration dimensions) imaging but poses significant challenges for clinical integration due to the volume and complexity of image analysis. Existing segmentation methods are tailored to 2D cine or static 3D acquisitions and cannot leverage the unique spatial-temporal wealth of FR data. PurposeTo develop and validate a deep learning (DL)-based segmentation framework for isotropic 3D+cardiac cycle FR cardiac MRI that enables accurate, fast, and clinically meaningful anatomical and functional analysis. MethodsFree-running, contrast-free bSSFP acquisitions at 1.5T and contrast-enhanced GRE acquisitions at 3T were used to reconstruct motion-resolved 5D datasets. From these, the end-expiratory respiratory phase was retained to yield fully isotropic 4D datasets. Automatic propagation of a limited set of manual segmentations was used to segment the left and right ventricular blood pool (LVB, RVB) and left ventricular myocardium (LVM) on reformatted short-axis (SAX) end-systolic (ES) and end-diastolic (ED) images. These were used to train a 3D nnU-Net model. Validation was performed using geometric metrics (Dice similarity coefficient [DSC], relative volume difference [RVD]), clinical metrics (ED and ES volumes, ejection fraction [EF]), and physiological consistency metrics (systole-diastole LVM volume mismatch and LV-RV stroke volume agreement). To assess the robustness and flexibility of the approach, we evaluated multiple additional DL training configurations such as using 4D propagation-based data augmentation to incorporate all cardiac phases into training. ResultsThe main proposed method achieved automatic segmentation within a minute, delivering high geometric accuracy and consistency (DSC: 0.94 {+/-} 0.01 [LVB], 0.86 {+/-} 0.02 [LVM], 0.92 {+/-} 0.01 [RVB]; RVD: 2.7%, 5.8%, 4.5%). Clinical LV metrics showed excellent agreement (ICC > 0.98 for EDV/ESV/EF, bias < 2 mL for EDV/ESV, < 1% for EF), while RV metrics remained clinically reliable (ICC > 0.93 for EDV/ESV/EF, bias < 1 mL for EDV/ESV, < 1% for EF) but exhibited wider limits of agreement. Training on all cardiac phases improved temporal coherence, reducing LVM volume mismatch from 4.0% to 2.6%. ConclusionThis study validates a DL-based method for fast and accurate segmentation of whole-heart free-running 4D cardiac MRI. Robust performance across diverse protocols and evaluation with complementary metrics that match state-of-the-art benchmarks supports its integration into clinical and research workflows, helping to overcome a key barrier to the broader adoption of free-running imaging.

Incremental diagnostic value of AI-derived coronary artery calcium in 18F-flurpiridaz PET Myocardial Perfusion Imaging

Barrett, O., Shanbhag, A., Zaid, R., Miller, R. J., Lemley, M., Builoff, V., Liang, J., Kavanagh, P., Buckley, C., Dey, D., Berman, D. S., Slomka, P.

medrxiv logopreprintJul 11 2025
BackgroundPositron Emission Tomography (PET) myocardial perfusion imaging (MPI) is a powerful tool for predicting coronary artery disease (CAD). Coronary artery calcium (CAC) provides incremental risk stratification to PET-MPI and enhances diagnostic accuracy. We assessed additive value of CAC score, derived from PET/CT attenuation maps to stress TPD results using the novel 18F-flurpiridaz tracer in detecting significant CAD. Methods and ResultsPatients from 18F-flurpiridaz phase III clinical trial who underwent PET/CT MPI with 18F-flurpiridaz tracer, had available CT attenuation correction (CTAC) scans for CAC scoring, and underwent invasive coronary angiography (ICA) within a 6-month period between 2011 and 2013, were included. Total perfusion deficit (TPD) was quantified automatically, and CAC scores from CTAC scans were assessed using artificial intelligence (AI)-derived segmentation and manual scoring. Obstructive CAD was defined as [&ge;]50% stenosis in Left Main (LM) artery, or 70% or more stenosis in any of the other major epicardial vessels. Prediction performance for CAD was assessed by comparing the area under receiver operating characteristic curve (AUC) for stress TPD alone and in combination with CAC score. Among 498 patients (72% males, median age 63 years) 30.1% had CAD. Incorporating CAC score resulted in a greater AUC: manual scoring (AUC=0.87, 95% Confidence Interval [CI] 0.34-0.90; p=0.015) and AI-based scoring (AUC=0.88, 95%CI 0.85-0.90; p=0.002) compared to stress TPD alone (AUC 0.84, 95% CI 0.80-0.92). ConclusionsCombining automatically derived TPD and CAC score enhances 18F-flurpiridaz PET MPI accuracy in detecting significant CAD, offering a method that can be routinely used with PET/CT scanners without additional scanning or technologist time. CONDENSED ABSTRACTO_ST_ABSBackgroundC_ST_ABSWe assessed the added value of CAC score from hybrid PET/CT CTAC scans combined with stress TPD for detecting significant CAD using novel 18F-flurpiridaz tracer Methods and resultsPatients from the 18F-flurpiridaz phase III clinical trial (n=498, 72% male, median age 63) who underwent PET/CT MPI and ICA within 6-months were included. TPD was quantified automatically, and CAC scores were assessed by AI and manual methods. Adding CAC score to TPD improved AUC for manual (0.87) and AI-based (0.88) scoring versus TPD alone (0.84). ConclusionsCombining TPD and CAC score enhances 18F-flurpiridaz PET MPI accuracy for CAD detection O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=110 SRC="FIGDIR/small/25330013v1_ufig1.gif" ALT="Figure 1"> View larger version (37K): [email protected]@ba93d1org.highwire.dtl.DTLVardef@13eabd9org.highwire.dtl.DTLVardef@1845505_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical Abstract.C_FLOATNO Overview of the study design. C_FIG

A View-Agnostic Deep Learning Framework for Comprehensive Analysis of 2D-Echocardiography

Anisuzzaman, D. M., Malins, J. G., Jackson, J. I., Lee, E., Naser, J. A., Rostami, B., Bird, J. G., Spiegelstein, D., Amar, T., Ngo, C. C., Oh, J. K., Pellikka, P. A., Thaden, J. J., Lopez-Jimenez, F., Poterucha, T. J., Friedman, P. A., Pislaru, S., Kane, G. C., Attia, Z. I.

medrxiv logopreprintJul 11 2025
Echocardiography traditionally requires experienced operators to select and interpret clips from specific viewing angles. Clinical decision-making is therefore limited for handheld cardiac ultrasound (HCU), which is often collected by novice users. In this study, we developed a view-agnostic deep learning framework to estimate left ventricular ejection fraction (LVEF), patient age, and patient sex from any of several views containing the left ventricle. Model performance was: (1) consistently strong across retrospective transthoracic echocardiography (TTE) datasets; (2) comparable between prospective HCU versus TTE (625 patients; LVEF r2 0.80 vs. 0.86, LVEF [> or [&le;]40%] AUC 0.981 vs. 0.993, age r2 0.85 vs. 0.87, sex classification AUC 0.985 vs. 0.996); (3) comparable between prospective HCU data collected by experts versus novice users (100 patients; LVEF r2 0.78 vs. 0.66, LVEF AUC 0.982 vs. 0.966). This approach may broaden the clinical utility of echocardiography by lessening the need for user expertise in image acquisition.

Predicting Cardiopulmonary Exercise Testing Performance in Patients Undergoing Transthoracic Echocardiography - An AI Based, Multimodal Model

Alishetti, S., Pan, W., Beecy, A. N., Liu, Z., Gong, A., Huang, Z., Clerkin, K. J., Goldsmith, R. L., Majure, D. T., Kelsey, C., vanMaanan, D., Ruhl, J., Tesfuzigta, N., Lancet, E., Kumaraiah, D., Sayer, G., Estrin, D., Weinberger, K., Kuleshov, V., Wang, F., Uriel, N.

medrxiv logopreprintJul 6 2025
Background and AimsTransthoracic echocardiography (TTE) is a widely available tool for diagnosing and managing heart failure but has limited predictive value for survival. Cardiopulmonary exercise test (CPET) performance strongly correlates with survival in heart failure patients but is less accessible. We sought to develop an artificial intelligence (AI) algorithm using TTE and electronic medical records to predict CPET peak oxygen consumption (peak VO2) [&le;] 14 mL/kg/min. MethodsAn AI model was trained to predict peak VO2 [&le;] 14 mL/kg/min from TTE images, structured TTE reports, demographics, medications, labs, and vitals. The training set included patients with a TTE within 6 months of a CPET. Performance was retrospectively tested in a held-out group from the development cohort and an external validation cohort. Results1,127 CPET studies paired with concomitant TTE were identified. The best performance was achieved by using all components (TTE images, all structured clinical data). The model performed well at predicting a peak VO2 [&le;] 14 mL/kg/min, with an AUROC of 0.84 (development cohort) and 0.80 (external validation cohort). It performed consistently well using higher ([&le;] 18 mL/kg/min) and lower ([&le;] 12 mL/kg/min) cut-offs. ConclusionsThis multimodal AI model effectively categorized patients into low and high risk predicted peak VO2, demonstrating the potential to identify previously unrecognized patients in need of advanced heart failure therapies where CPET is not available.

Dynamic frame-by-frame motion correction for 18F-flurpiridaz PET-MPI using convolution neural network

Urs, M., Killekar, A., Builoff, V., Lemley, M., Wei, C.-C., Ramirez, G., Kavanagh, P., Buckley, C., Slomka, P. J.

medrxiv logopreprintJul 1 2025
PurposePrecise quantification of myocardial blood flow (MBF) and flow reserve (MFR) in 18F-flurpiridaz PET significantly relies on motion correction (MC). However, the manual frame-by-frame correction leads to significant inter-observer variability, time-consuming, and requires significant experience. We propose a deep learning (DL) framework for automatic MC of 18F-flurpiridaz PET. MethodsThe method employs a 3D ResNet based architecture that takes 3D PET volumes and outputs motion vectors. It was validated using 5-fold cross-validation on data from 32 sites of a Phase III clinical trial (NCT01347710). Manual corrections from two experienced operators served as ground truth, and data augmentation using simulated vectors enhanced training robustness. The study compared the DL approach to both manual and standard non-AI automatic MC methods, assessing agreement and diagnostic accuracy using minimal segmental MBF and MFR. ResultsThe area under the receiver operating characteristic curves (AUC) for significant CAD were comparable between DL-MC MBF, manual-MC MBF from Operators (AUC=0.897,0.892 and 0.889, respectively; p>0.05), standard non-AI automatic MC (AUC=0.877; p>0.05) and significantly higher than No-MC (AUC=0.835; p<0.05). Similar findings were observed with MFR. The 95% confidence limits for agreement with the operator were {+/-}0.49ml/g/min (mean difference = 0.00) for MFR and {+/-}0.24ml/g/min (mean difference = 0.00) for MBF. ConclusionDL-MC is significantly faster but diagnostically comparable to manual-MC. The quantitative results obtained with DL-MC for MBF and MFR are in excellent agreement with those manually corrected by experienced operators compared to standard non-AI automatic MC in patients undergoing 18F-flurpiridaz PET-MPI.

Multicenter Evaluation of Interpretable AI for Coronary Artery Disease Diagnosis from PET Biomarkers

Zhang, W., Kwiecinski, J., Shanbhag, A., Miller, R. J., Ramirez, G., Yi, J., Han, D., Dey, D., Grodecka, D., Grodecki, K., Lemley, M., Kavanagh, P., Liang, J. X., Zhou, J., Builoff, V., Hainer, J., Carre, S., Barrett, L., Einstein, A. J., Knight, S., Mason, S., Le, V., Acampa, W., Wopperer, S., Chareonthaitawee, P., Berman, D. S., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 30 2025
BackgroundPositron emission tomography (PET)/CT for myocardial perfusion imaging (MPI) provides multiple imaging biomarkers, often evaluated separately. We developed an artificial intelligence (AI) model integrating key clinical PET MPI parameters to improve the diagnosis of obstructive coronary artery disease (CAD). MethodsFrom 17,348 patients undergoing cardiac PET/CT across four sites, we retrospectively enrolled 1,664 subjects who had invasive coronary angiography within 180 days and no prior CAD. Deep learning was used to derive coronary artery calcium score (CAC) from CT attenuation correction maps. XGBoost machine learning model was developed using data from one site to detect CAD, defined as left main stenosis [&ge;]50% or [&ge;]70% in other arteries. The model utilized 10 image-derived parameters from clinical practice: CAC, stress/rest left ventricle ejection fraction, stress myocardial blood flow (MBF), myocardial flow reserve (MFR), ischemic and stress total perfusion deficit (TPD), transient ischemic dilation ratio, rate pressure product, and sex. Generalizability was evaluated in the remaining three sites--chosen to maximize testing power and capture inter-site variability--and model performance was compared with quantitative analyses using the area under the receiver operating characteristic curve (AUC). Patient-specific predictions were explained using shapley additive explanations. ResultsThere was a 61% and 53% CAD prevalence in the training (n=386) and external testing (n=1,278) set, respectively. In the external evaluation, the AI model achieved a higher AUC (0.83 [95% confidence interval (CI): 0.81-0.85]) compared to clinical score by experienced physicians (0.80 [0.77-0.82], p=0.02), ischemic TPD (0.79 [0.77-0.82], p<0.001), MFR (0.75 [0.72-0.78], p<0.001), and CAC (0.69 [0.66-0.72], p<0.001). The models performances were consistent in sex, body mass index, and age groups. The top features driving the prediction were stress/ischemic TPD, CAC, and MFR. ConclusionAI integrating perfusion, flow, and CAC scoring improves PET MPI diagnostic accuracy, offering automated and interpretable predictions for CAD diagnosis.

AI-Derived Splenic Response in Cardiac PET Predicts Mortality: A Multi-Site Study

Dharmavaram, N., Ramirez, G., Shanbhag, A., Miller, R. J. H., Kavanagh, P., Yi, J., Lemley, M., Builoff, V., Marcinkiewicz, A. M., Dey, D., Hainer, J., Wopperer, S., Knight, S., Le, V. T., Mason, S., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R. S., Rosamond, T. L., Al-Mallah, M. H., Slipczuk, L., Travin, M., Acampa, W., Einstein, A., Chareonthaitawee, P., Berman, D., Di Carli, M., Slomka, P.

medrxiv logopreprintJun 28 2025
BackgroundInadequate pharmacologic stress may limit the diagnostic and prognostic accuracy of myocardial perfusion imaging (MPI). The splenic ratio (SR), a measure of stress adequacy, has emerged as a potential imaging biomarker. ObjectivesTo evaluate the prognostic value of artificial intelligence (AI)-derived SR in a large multicenter 82Rb-PET cohort undergoing regadenoson stress testing. MethodsWe retrospectively analyzed 10,913 patients from three sites in the REFINE PET registry with clinically indicated MPI and linked clinical outcomes. SR was calculated using fully automated algorithms as the ratio of splenic uptake at stress versus rest. Patients were stratified by SR into high ([&ge;]90th percentile) and low (<90th percentile) groups. The primary outcome was major adverse cardiovascular events (MACE). Survival analysis was conducted using Kaplan-Meier and Cox proportional hazards models adjusted for clinical and imaging covariates, including myocardial flow reserve (MFR [&ge;]2 vs. <2). ResultsThe cohort had a median age of 68 years, with 57% male patients. Common risk factors included hypertension (84%), dyslipidemia (76%), diabetes (33%), and prior coronary artery disease (31%). Median follow-up was 4.6 years. Patients with high SR (n=1,091) had an increased risk of MACE (HR 1.18, 95% CI 1.06-1.31, p=0.002). Among patients with preserved MFR ([&ge;]2; n=7,310), high SR remained independently associated with MACE (HR 1.44, 95% CI 1.24-1.67, p<0.0001). ConclusionsElevated AI-derived SR was independently associated with adverse cardiovascular outcomes, including among patients with preserved MFR. These findings support SR as a novel, automated imaging biomarker for risk stratification in 82Rb PET MPI. Condensed AbstractAI-derived splenic ratio (SR), a marker of pharmacologic stress adequacy, was independently associated with increased cardiovascular risk in a large 82Rb PET cohort, even among patients with preserved myocardial flow reserve (MFR). High SR identified individuals with elevated MACE risk despite normal perfusion and flow findings, suggesting unrecognized physiologic vulnerability. Incorporating automated SR into PET MPI interpretation may enhance risk stratification and identify patients who could benefit from intensified preventive care, particularly when traditional imaging markers appear reassuring. These findings support SR as a clinically meaningful, easily integrated biomarker in stress PET imaging.
Page 1 of 219 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.