Sort by:
Page 1 of 18 results

Stacking Ensemble Learning-based Models Enabling Accurate Diagnosis of Cardiac Amyloidosis using SPECT/CT:an International and Multicentre Study

Mo, Q., Cui, J., Jia, S., Zhang, Y., Xiao, Y., Liu, C., Zhou, C., Spielvogel, C. P., Calabretta, R., Zhou, W., Cao, K., Hacker, M., Li, X., Zhao, M.

medrxiv logopreprintJun 23 2025
PURPOSECardiac amyloidosis (CA), a life-threatening infiltrative cardiomyopathy, can be non-invasively diagnosed using [99mTc]Tc-bisphosphonate SPECT/CT. However, subjective visual interpretation risks diagnostic inaccuracies. We developed and validated a machine learning (ML) framework leveraging SPECT/CT radiomics to automate CA detection. METHODSThis retrospective multicenter study analyzed 290 patients of suspected CA who underwent [99mTc]Tc-PYP or [99mTc]Tc-DPD SPECT/CT. Radiomic features were extracted from co-registered SPECT and CT images, harmonized via intra-class correlation and Pearson correlation filtering, and optimized through LASSO regression. A stacking ensemble model incorporating support vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), and adaptive boosting (AdaBoost) classifiers was constructed. The model was validated using an internal validation set (n = 54) and two external test set (n = 54 and n = 58).Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). Feature importance was interpreted using SHapley Additive exPlanations (SHAP) values. RESULTSOf 290 patients, 117 (40.3%) had CA. The stacking radiomics model attained AUCs of 0.871, 0.824, and 0.839 in the validation, test 1, and test 2 cohorts, respectively, significantly outperforming the clinical model (AUC 0.546 in validation set, P<0.05). DCA demonstrated superior net benefit over the clinical model across relevant thresholds, and SHAP analysis highlighted wavelet-transformed first-order and texture features as key predictors. CONCLUSIONA stacking ML model with SPECT/CT radiomics improves CA diagnosis, showing strong generalizability across varied imaging protocols and populations and highlighting its potential as a decision-support tool.

AI-based identification of patients who benefit from revascularization: a multicenter study

Zhang, W., Miller, R. J., Patel, K., Shanbhag, A., Liang, J., Lemley, M., Ramirez, G., Builoff, V., Yi, J., Zhou, J., Kavanagh, P., Acampa, W., Bateman, T. M., Di Carli, M. F., Dorbala, S., Einstein, A. J., Fish, M. B., Hauser, M. T., Ruddy, T., Kaufmann, P. A., Miller, E. J., Sharir, T., Martins, M., Halcox, J., Chareonthaitawee, P., Dey, D., Berman, D., Slomka, P.

medrxiv logopreprintJun 12 2025
Background and AimsRevascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions. MethodsUsing a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy--early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy--differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression. ResultsOf 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF. ConclusionsThis study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=104 SRC="FIGDIR/small/25329295v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@1df75d8org.highwire.dtl.DTLVardef@1b1ce68org.highwire.dtl.DTLVardef@663cdf_HPS_FORMAT_FIGEXP M_FIG C_FIG

Evaluating the performance and potential bias of predictive models for the detection of transthyretin cardiac amyloidosis

Hourmozdi, J., Easton, N., Benigeri, S., Thomas, J. D., Narang, A., Ouyang, D., Duffy, G., Upton, R., Hawkes, W., Akerman, A., Okwuosa, I., Kline, A., Kho, A. N., Luo, Y., Shah, S. J., Ahmad, F. S.

medrxiv logopreprintJun 2 2025
BackgroundDelays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared. ObjectivesThe aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias. MethodsWe identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo(R) Amyloidosis). We evaluated for bias using standard fairness metrics. ResultsThe analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black. ConclusionsDeep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.

Novel Deep Learning Framework for Simultaneous Assessment of Left Ventricular Mass and Longitudinal Strain: Clinical Feasibility and Validation in Patients with Hypertrophic Cardiomyopathy

Park, J., Yoon, Y. E., Jang, Y., Jung, T., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Chun, E. J., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 23 2025
BackgroundThis study aims to present the Segmentation-based Myocardial Advanced Refinement Tracking (SMART) system, a novel artificial intelligence (AI)-based framework for transthoracic echocardiography (TTE) that incorporates motion tracking and left ventricular (LV) myocardial segmentation for automated LV mass (LVM) and global longitudinal strain (LVGLS) assessment. MethodsThe SMART system demonstrates LV speckle tracking based on motion vector estimation, refined by structural information using endocardial and epicardial segmentation throughout the cardiac cycle. This approach enables automated measurement of LVMSMART and LVGLSSMART. The feasibility of SMART is validated in 111 hypertrophic cardiomyopathy (HCM) patients (median age: 58 years, 69% male) who underwent TTE and cardiac magnetic resonance imaging (CMR). ResultsLVGLSSMART showed a strong correlation with conventional manual LVGLS measurements (Pearsons correlation coefficient [PCC] 0.851; mean difference 0 [-2-0]). When compared to CMR as the reference standard for LVM, the conventional dimension-based TTE method overestimated LVM (PCC 0.652; mean difference: 106 [90-123]), whereas LVMSMART demonstrated excellent agreement with CMR (PCC 0.843; mean difference: 1 [-11-13]). For predicting extensive myocardial fibrosis, LVGLSSMART and LVMSMART exhibited performance comparable to conventional LVGLS and CMR (AUC: 0.72 and 0.66, respectively). Patients identified as high-risk for extensive fibrosis by LVGLSSMART and LVMSMART had significantly higher rates of adverse outcomes, including heart failure hospitalization, new-onset atrial fibrillation, and defibrillator implantation. ConclusionsThe SMART technique provides a comparable LVGLS evaluation and a more accurate LVM assessment than conventional TTE, with predictive values for myocardial fibrosis and adverse outcomes. These findings support its utility in HCM management.

Cardiac Magnetic Resonance Imaging in the German National Cohort: Automated Segmentation of Short-Axis Cine Images and Post-Processing Quality Control

Full, P. M., Schirrmeister, R. T., Hein, M., Russe, M. F., Reisert, M., Ammann, C., Greiser, K. H., Niendorf, T., Pischon, T., Schulz-Menger, J., Maier-Hein, K. H., Bamberg, F., Rospleszcz, S., Schlett, C. L., Schuppert, C.

medrxiv logopreprintMay 21 2025
PurposeTo develop a segmentation and quality control pipeline for short-axis cardiac magnetic resonance (CMR) cine images from the prospective, multi-center German National Cohort (NAKO). Materials and MethodsA deep learning model for semantic segmentation, based on the nnU-Net architecture, was applied to full-cycle short-axis cine images from 29,908 baseline participants. The primary objective was to determine data on structure and function for both ventricles (LV, RV), including end diastolic volumes (EDV), end systolic volumes (ESV), and LV myocardial mass. Quality control measures included a visual assessment of outliers in morphofunctional parameters, inter- and intra-ventricular phase differences, and LV time-volume curves (TVC). These were adjudicated using a five-point rating scale, ranging from five (excellent) to one (non-diagnostic), with ratings of three or lower subject to exclusion. The predictive value of outlier criteria for inclusion and exclusion was analyzed using receiver operating characteristics. ResultsThe segmentation model generated complete data for 29,609 participants (incomplete in 1.0%) and 5,082 cases (17.0 %) were visually assessed. Quality assurance yielded a sample of 26,899 participants with excellent or good quality (89.9%; exclusion of 1,875 participants due to image quality issues and 835 cases due to segmentation quality issues). TVC was the strongest single discriminator between included and excluded participants (AUC: 0.684). Of the two-category combinations, the pairing of TVC and phases provided the greatest improvement over TVC alone (AUC difference: 0.044; p<0.001). The best performance was observed when all three categories were combined (AUC: 0.748). Extending the quality-controlled sample to include acceptable quality ratings, a total of 28,413 (95.0%) participants were available. ConclusionThe implemented pipeline facilitated the automated segmentation of an extensive CMR dataset, integrating quality control measures. This methodology ensures that ensuing quantitative analyses are conducted with a diminished risk of bias.

Longitudinal Validation of a Deep Learning Index for Aortic Stenosis Progression

Park, J., Kim, J., Yoon, Y. E., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J., Park, J.-H.

medrxiv logopreprintMay 19 2025
AimsAortic stenosis (AS) is a progressive disease requiring timely monitoring and intervention. While transthoracic echocardiography (TTE) remains the diagnostic standard, deep learning (DL)-based approaches offer potential for improved disease tracking. This study examined the longitudinal changes in a previously developed DL-derived index for AS continuum (DLi-ASc) and assessed its value in predicting progression to severe AS. Methods and ResultsWe retrospectively analysed 2,373 patients a(7,371 TTEs) from two tertiary hospitals. DLi-ASc (scaled 0-100), derived from parasternal long- and/or short-axis views, was tracked longitudinally. DLi-ASc increased in parallel with worsening AS stages (p for trend <0.001) and showed strong correlations with AV maximal velocity (Vmax) (Pearson correlation coefficients [PCC] = 0.69, p<0.001) and mean pressure gradient (mPG) (PCC = 0.66, p<0.001). Higher baseline DLi-ASc was associated with a faster AS progression rate (p for trend <0.001). Additionally, the annualised change in DLi-ASc, estimated using linear mixed-effect models, correlated strongly with the annualised progression of AV Vmax (PCC = 0.71, p<0.001) and mPG (PCC = 0.68, p<0.001). In Fine-Gray competing risk models, baseline DLi-ASc independently predicted progression to severe AS, even after adjustment for AV Vmax or mPG (hazard ratio per 10-point increase = 2.38 and 2.80, respectively) ConclusionDLi-ASc increased in parallel with AS progression and independently predicted severe AS progression. These findings support its role as a non-invasive imaging-based digital marker for longitudinal AS monitoring and risk stratification.

Foundation versus Domain-Specific Models for Left Ventricular Segmentation on Cardiac Ultrasound

Chao, C.-J., Gu, Y., Kumar, W., Xiang, T., Appari, L., Wu, J., Farina, J. M., Wraith, R., Jeong, J., Arsanjani, R., Garvan, K. C., Oh, J. K., Langlotz, C. P., Banerjee, I., Li, F.-F., Adeli, E.

medrxiv logopreprintMay 17 2025
The Segment Anything Model (SAM) was fine-tuned on the EchoNet-Dynamic dataset and evaluated on external transthoracic echocardiography (TTE) and Point-of-Care Ultrasound (POCUS) datasets from CAMUS (University Hospital of St Etienne) and Mayo Clinic (99 patients: 58 TTE, 41 POCUS). Fine-tuned SAM was superior or comparable to MedSAM. The fine-tuned SAM also outperformed EchoNet and U-Net models, demonstrating strong generalization, especially on apical 2-chamber (A2C) images (fine-tuned SAM vs. EchoNet: CAMUS-A2C: DSC 0.891 {+/-} 0.040 vs. 0.752 {+/-} 0.196, p<0.0001) and POCUS (DSC 0.857 {+/-} 0.047 vs. 0.667 {+/-} 0.279, p<0.0001). Additionally, SAM-enhanced workflow reduced annotation time by 50% (11.6 {+/-} 4.5 sec vs. 5.7 {+/-} 1.7 sec, p<0.0001) while maintaining segmentation quality. We demonstrated an effective strategy for fine-tuning a vision foundation model for enhancing clinical workflow efficiency and supporting human-AI collaboration.

Single View Echocardiographic Analysis for Left Ventricular Outflow Tract Obstruction Prediction in Hypertrophic Cardiomyopathy: A Deep Learning Approach

Kim, J., Park, J., Jeon, J., Yoon, Y. E., Jang, Y., Jeong, H., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 14 2025
BackgroundAccurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler, and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE). MethodsA DL model was trained on PLAX videos extracted from TTE examinations (developmental dataset, n=1,007) to capture both morphological and dynamic motion features, generating a DL index for LVOTO (DLi-LVOTO, range 0-100). Performance was evaluated in an internal test dataset (ITDS, n=87) and externally validated in the distinct hospital dataset (DHDS, n=1,334) and the LVOTO reduction treatment dataset (n=156). ResultsThe model achieved high accuracy in detecting severe LVOTO (pressure gradient[&ge;] 50mmHg), with area under the receiver operating characteristics curve (AUROC) of 0.97 (95% confidence interval: 0.92-1.00) in ITDS and 0.93 (0.92-0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative predictive value (NPV) of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and NPV of 95.5%. DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten treatment, correlating with reductions in peak pressure gradient (p<0.001 for all). ConclusionsOur DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a complementary tool, particularly in resource-limited settings or when Doppler is unavailable, and for monitoring treatment response.
Page 1 of 18 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.